×

Cosmological simulation in tides: power spectra, halo shape responses, and shape assembly bias. (English) Zbl 1485.83109

Summary: The well-developed separate universe technique enables accurate calibration of the response of any observable to an isotropic long-wavelength density fluctuation. The large-scale environment also hosts tidal modes that perturb all observables anisotropically. As in the separate universe, both the long tidal and density modes can be absorbed by an effective anisotropic background, on which the interaction and evolution of the short modes change accordingly. We further develop the tidal simulation method, including proper corrections to the second order Lagrangian perturbation theory (2LPT) to generate initial conditions of the simulations. We measure the linear tidal responses of the matter power spectrum, at high redshift from our modified 2LPT, and at low redshift from the tidal simulations. Our results agree qualitatively with previous works, but exhibit quantitative differences in both cases. We also measure the linear tidal response of the halo shapes, or the shape bias, and find its universal relation with the linear halo bias, for which we provide a fitting formula. Furthermore, analogous to the assembly bias, we study the secondary dependence of the shape bias, and discover for the first time the dependence on the halo concentration and axis ratio. Our results provide useful insights for studies of the intrinsic alignment as a source of either contamination or information. These effects need to be correctly taken into account when one uses intrinsic alignments of galaxy shapes as a precision cosmological tool.

MSC:

83F05 Relativistic cosmology
83C56 Dark matter and dark energy
35B20 Perturbations in context of PDEs
83-10 Mathematical modeling or simulation for problems pertaining to relativity and gravitational theory

Software:

TreePM; CLASS

References:

[1] Li, Yin; Hu, Wayne; Takada, Masahiro, Super-Sample Covariance in Simulations, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.083519
[2] Wagner, Christian; Schmidt, Fabian; Chiang, Chi-Ting; Komatsu, Eiichiro, Separate Universe Simulations, Mon. Not. Roy. Astron. Soc., 448, L11-L15 (2015) · doi:10.1093/mnrasl/slu187
[3] Baldauf, Tobias; Seljak, Uroš; Senatore, Leonardo; Zaldarriaga, Matias, Linear response to long wavelength fluctuations using curvature simulations, JCAP, 09 (2016) · doi:10.1088/1475-7516/2016/09/007
[4] Li, Yin; Hu, Wayne; Takada, Masahiro, Separate Universe Consistency Relation and Calibration of Halo Bias, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.063507
[5] Lazeyras, Titouan; Wagner, Christian; Baldauf, Tobias; Schmidt, Fabian, Precision measurement of the local bias of dark matter halos, JCAP, 02 (2016) · doi:10.1088/1475-7516/2016/02/018
[6] Bond, J. R.; Myers, S. T., The Hierarchical peak patch picture of cosmic catalogs. 1. Algorithms, Astrophys. J. Suppl., 103, 1 (1996) · doi:10.1086/192267
[7] Akitsu, Kazuyuki; Takada, Masahiro; Li, Yin, Large-scale tidal effect on redshift-space power spectrum in a finite-volume survey, Phys. Rev. D, 95 (2017) · doi:10.1103/PhysRevD.95.083522
[8] Schmidt, Andreas S.; White, Simon D. M.; Schmidt, Fabian; Stücker, Jens, Cosmological N-Body Simulations with a Large-Scale Tidal Field, Mon. Not. Roy. Astron. Soc., 479, 162-170 (2018) · doi:10.1093/mnras/sty1430
[9] Stücker, Jens; Schmidt, Andreas. S.; White, Simon D. M.; Schmidt, Fabian; Hahn, Oliver, Measuring the Tidal Response of Structure Formation: Anisotropic Separate Universe Simulations using TreePM, Mon. Not. Roy. Astron. Soc., 503, 1473-1489 (2021) · doi:10.1093/mnras/stab473
[10] Masaki, Shogo; Nishimichi, Takahiro; Takada, Masahiro, Anisotropic separate universe simulations, Mon. Not. Roy. Astron. Soc., 496, 483-496 (2020) · doi:10.1093/mnras/staa1579
[11] Masaki, Shogo; Nishimichi, Takahiro; Takada, Masahiro, Impacts of pre-initial conditions on anisotropic separate universe simulations: a boosted tidal response in the epoch of reionization, Mon. Not. Roy. Astron. Soc., 500, 1018-1028 (2020) · doi:10.1093/mnras/staa3309
[12] Akitsu, Kazuyuki; Takada, Masahiro, Impact of large-scale tides on cosmological distortions via redshift-space power spectrum, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.063527
[13] Li, Yin; Schmittfull, Marcel; Seljak, Uroš, Galaxy power-spectrum responses and redshift-space super-sample effect, JCAP, 02 (2018) · doi:10.1088/1475-7516/2018/02/022
[14] Akitsu, Kazuyuki; Sugiyama, Naonori S.; Shiraishi, Maresuke, Super-sample tidal modes on the celestial sphere, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.103515
[15] Barreira, Alexandre; Krause, Elisabeth; Schmidt, Fabian, Complete super-sample lensing covariance in the response approach, JCAP, 06 (2018) · Zbl 1527.83003 · doi:10.1088/1475-7516/2018/06/015
[16] Catelan, Paolo; Kamionkowski, Marc; Blandford, Roger D., Intrinsic and extrinsic galaxy alignment, Mon. Not. Roy. Astron. Soc., 320, L7-L13 (2001) · doi:10.1046/j.1365-8711.2001.04105.x
[17] Hirata, Christopher M.; Seljak, Uros, Intrinsic alignment-lensing interference as a contaminant of cosmic shear, Phys. Rev. D, 70 (2004) · doi:10.1103/PhysRevD.82.049901
[18] Mandelbaum, Rachel; Hirata, Christopher M.; Ishak, Mustapha; Seljak, Uros; Brinkmann, Jonathan, Detection of large scale intrinsic ellipticity-density correlation from the sloan digital sky survey and implications for weak lensing surveys, Mon. Not. Roy. Astron. Soc., 367, 611-626 (2006) · doi:10.1111/j.1365-2966.2005.09946.x
[19] Taruya, Atsushi; Okumura, Teppei, Improving geometric and dynamical constraints on cosmology with intrinsic alignments of galaxies (2020) · doi:10.3847/2041-8213/ab7934
[20] Kurita, Toshiki; Takada, Masahiro; Nishimichi, Takahiro; Takahashi, Ryuichi; Osato, Ken; Kobayashi, Yosuke, Power spectrum of halo intrinsic alignments in simulations, Mon. Not. Roy. Astron. Soc., 501, 833-852 (2021) · doi:10.1093/mnras/staa3625
[21] Schmidt, Fabian; Jeong, Donghui, Large-Scale Structure with Gravitational Waves II: Shear, Phys. Rev. D, 86 (2012) · doi:10.1103/PhysRevD.86.083513
[22] Schmidt, Fabian; Pajer, Enrico; Zaldarriaga, Matias, Large-Scale Structure and Gravitational Waves III: Tidal Effects, Phys. Rev. D, 89 (2014) · doi:10.1103/PhysRevD.89.083507
[23] Schmidt, Fabian; Chisari, Nora Elisa; Dvorkin, Cora, Imprint of inflation on galaxy shape correlations, JCAP, 10 (2015) · doi:10.1088/1475-7516/2015/10/032
[24] Akitsu, Kazuyuki; Kurita, Toshiki; Nishimichi, Takahiro; Takada, Masahiro; Tanaka, Satoshi, Imprint of anisotropic primordial non-Gaussianity on halo intrinsic alignments in simulations (2020)
[25] Kogai, Kazuhiro; Akitsu, Kazuyuki; Schmidt, Fabian; Urakawa, Yuko, Galaxy imaging surveys as spin-sensitive detector for cosmological colliders, JCAP, 03 (2021) · Zbl 1484.85015 · doi:10.1088/1475-7516/2021/03/060
[26] Gnedin, Nickolay Y.; Kravtsov, Andrey V.; Rudd, Douglas H., Implementing the DC Mode in Cosmological Simulations with Supercomoving Variables, Astrophys. J. Suppl., 194, 46 (2011) · doi:10.1088/0067-0049/194/2/46
[27] Sherwin, Blake D.; Zaldarriaga, Matias, The Shift of the Baryon Acoustic Oscillation Scale: A Simple Physical Picture, Phys. Rev. D, 85 (2012) · doi:10.1103/PhysRevD.85.103523
[28] Zeldovich, Ya. B., Gravitational instability: An Approximate theory for large density perturbations, Astron. Astrophys., 5, 84-89 (1970)
[29] Crocce, M.; Pueblas, S.; Scoccimarro, R., Transients from Initial Conditions in Cosmological Simulations, Mon. Not. Roy. Astron. Soc., 373, 369-381 (2006) · doi:10.1111/j.1365-2966.2006.11040.x
[30] Bagla, Jasjeet S., A TreePM code for cosmological N-body simulations, J. Astrophys. Astron., 23, 185-196 (2002) · doi:10.1007/BF02702282
[31] Bagla, J. S.; Ray, Suryadeep, Performance characteristics of treepm codes, New Astron., 8, 665-677 (2003) · doi:10.1016/S1384-1076(03)00056-3
[32] Quinn, Thomas R.; Katz, Neal; Stadel, Joachim; Lake, George, Time stepping N body simulations (1997)
[33] Springel, Volker, Simulating the joint evolution of quasars, galaxies and their large-scale distribution, Nature, 435, 629-636 (2005) · doi:10.1038/nature03597
[34] Planck Collaboration; Ade, P. A. R., Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys., 594, A13 (2016) · doi:10.1051/0004-6361/201525830
[35] Blas, Diego; Lesgourgues, Julien; Tram, Thomas, The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes, JCAP, 07 (2011) · doi:10.1088/1475-7516/2011/07/034
[36] Mansfield, Philip; Avestruz, Camille, How Biased Are Halo Properties in Cosmological Simulations?, Mon. Not. Roy. Astron. Soc., 500, 3309-3328 (2020) · doi:10.1093/mnras/staa3388
[37] Knollmann, Steffen R.; Knebe, Alexander, Ahf: Amiga’s Halo Finder, Astrophys. J. Suppl., 182, 608-624 (2009) · doi:10.1088/0067-0049/182/2/608
[38] Okumura, Teppei; Jing, Y. P.; Li, Cheng, Intrinsic Ellipticity Correlation of SDSS Luminous Red Galaxies and Misalignment with their Host Dark Matter Halos, Astrophys. J., 694, 214-221 (2009) · doi:10.1088/0004-637X/694/1/214
[39] Faltenbacher, A.; Li, Cheng; White, Simon D. M.; Jing, Y. P.; Mao, Shude; Wang, Jie, Alignment between galaxies and large-scale structure, Res. Astron. Astrophys., 9, 41-58 (2009) · doi:10.1088/1674-4527/9/1/004
[40] Okumura, Teppei; Jing, Y. P., The Gravitational Shear — Intrinsic Ellipticity Correlation Functions of Luminous Red Galaxies in Observation and in ΛCDM model, Astrophys. J. Lett., 694, L83-L86 (2009) · doi:10.1088/0004-637X/694/1/L83
[41] Zemp, Marcel; Gnedin, Oleg Y.; Gnedin, Nickolay Y.; Kravtsov, Andrey V., On determining the shape of matter distributions, Astrophys. J. Suppl., 197, 30 (2011) · doi:10.1088/0067-0049/197/2/30
[42] Shi, Jingjing; Kurita, Toshiki; Takada, Masahiro; Osato, Ken; Kobayashi, Yosuke; Nishimichi, Takahiro, Power Spectrum of Intrinsic Alignments of Galaxies in IllustrisTNG, JCAP, 03 (2021) · doi:10.1088/1475-7516/2021/03/030
[43] Schmitz, Denise M.; Hirata, Christopher M.; Blazek, Jonathan; Krause, Elisabeth, Time evolution of intrinsic alignments of galaxies, JCAP, 07 (2018) · doi:10.1088/1475-7516/2018/07/030
[44] Prada, Francisco; Klypin, Anatoly A.; Cuesta, Antonio J.; Betancort-Rijo, Juan E.; Primack, Joel, Halo concentrations in the standard LCDM cosmology, Mon. Not. Roy. Astron. Soc., 423, 3018-3030 (2012) · doi:10.1111/j.1365-2966.2012.21007.x
[45] Dalal, Neal; White, Martin; Bond, J. Richard; Shirokov, Alexander, Halo Assembly Bias in Hierarchical Structure Formation, Astrophys. J., 687, 12-21 (2008) · doi:10.1086/591512
[46] Obuljen, Andrej; Dalal, Neal; Percival, Will J., Anisotropic halo assembly bias and redshift-space distortions, JCAP, 10 (2019) · Zbl 1515.85019 · doi:10.1088/1475-7516/2019/10/020
[47] Obuljen, Andrej; Percival, Will J.; Dalal, Neal, Detection of anisotropic galaxy assembly bias in BOSS DR12, JCAP, 10 (2020) · doi:10.1088/1475-7516/2020/10/058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.