×

Stochastic differential games with controlled regime-switching. (English) Zbl 07872430

Summary: In this article, we consider a two-player zero-sum stochastic differential game with regime-switching. Different from the results in existing literature on stochastic differential games with regime-switching, we consider a game between a Markov chain and a state process which are two fully coupled stochastic processes. The payoff function is given by an integral with random terminal horizon. We first study the continuity of the lower and upper value functions under some additional conditions, based on which we establish the dynamic programming principle. We further prove that the lower and upper value functions are unique viscosity solutions of the associated lower and upper Hamilton-Jacobi-Bellman-Isaacs equations with regime-switching, respectively. These two value functions coincide under the Isaacs condition, which implies that the game admits a value. We finally apply our results to an example.

MSC:

91A15 Stochastic games, stochastic differential games
91A05 2-person games
49L20 Dynamic programming in optimal control and differential games
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
Full Text: DOI

References:

[1] Barles, G.; Buckdahn, R.; Pardoux, E., Backward stochastic differential equations and integral-partial differential equations, Stoch Stoch Rep, 60, 1-2, 57-83, 1997 · doi:10.1080/17442509708834099
[2] Barmish, B., Measurable selection theorems and their application to problems of guaranteed performance, IEEE Trans Autom Control, 23, 4, 685-687, 1978 · Zbl 0383.93049 · doi:10.1109/TAC.1978.1101799
[3] Bayraktar, E.; Song, Q.; Yang, J., On the continuity of stochastic exit time control problems, Stoch Anal Appl, 29, 1, 48-60, 2010 · Zbl 1211.60012 · doi:10.1080/07362994.2011.532020
[4] Bellman, R., On the theory of dynamic programming, Proc Natl Acad Sci, 38, 8, 716-719, 1952 · Zbl 0047.13802 · doi:10.1073/pnas.38.8.716
[5] Biswas, I., On zero-sum stochastic differential games with jump-diffusion driven state: a viscosity solution framework, SIAM J Control Optim, 50, 4, 1823-1858, 2012 · Zbl 1253.91027 · doi:10.1137/080720504
[6] Buckdahn, R.; Li, J., Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations, SIAM J Control Optim, 47, 1, 444-475, 2008 · Zbl 1157.93040 · doi:10.1137/060671954
[7] Buckdahn, R.; Nie, T., Generalized Hamilton-Jacobi-Bellman equations with Dirichlet boundary condition and stochastic exit time optimal control problem, SIAM J Control Optim, 54, 2, 602-631, 2016 · Zbl 1345.49035 · doi:10.1137/140998160
[8] Cosso, A., Stochastic differential games involving impulse controls and double-obstacle quasi-variational inequalities, SIAM J Control Optim, 51, 3, 2102-2131, 2013 · Zbl 1271.93172 · doi:10.1137/120880094
[9] Crandall, M.; Ishii, H.; Lions, P., User’s guide to viscosity solutions of second order partial differential equations, Bull Am Math Soc, 27, 1, 1-67, 1992 · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[10] Elliott, R.; Siu, T., A stochastic differential game for optimal investment of an insurer with regime switching, Quant Finance, 11, 3, 365-380, 2011 · Zbl 1232.91346 · doi:10.1080/14697681003591704
[11] Elliott R, Siu T (2011b) A BSDE approach to a risk-based optimal investment of an insurer. Automatica 47(2):253-261. doi:10.1016/j.automatica.2010.10.032 · Zbl 1213.60100
[12] Fleming, W.; Soner, H., Controlled Markov processes and viscosity solutions, 2006, New York: Springer, New York · Zbl 1105.60005 · doi:10.1007/0-387-31071-1
[13] Fleming, W.; Souganidis, P., On the existence of value functions of two-player, zero-sum stochastic differential games, Indiana Univ Math J, 38, 2, 293-314, 1989 · Zbl 0686.90049 · doi:10.1512/iumj.1989.38.38015
[14] Hamadene, S.; Lepeltier, J., Zero-sum stochastic differential games and backward equations, Syst Control Lett, 24, 4, 259-263, 1995 · Zbl 0877.93125 · doi:10.1016/0167-6911(94)00011-J
[15] Huang, Y.; Guo, X., Optimal risk probability for first passage models in semi-Markov decision processes, J Math Anal Appl, 359, 1, 404-420, 2009 · Zbl 1176.90625 · doi:10.1016/j.jmaa.2009.05.058
[16] Huo, H.; Zou, X.; Guo, X., The risk probability criterion for discounted continuous-time Markov decision processes, Discrete Event Dyn Syst, 27, 675-699, 2017 · Zbl 1386.93308 · doi:10.1007/s10626-017-0257-6
[17] Kushner, H.; Dupuis, P., Numerical methods for stochastic control problems in continuous time, 2001, New York: Springer, New York · Zbl 0968.93005 · doi:10.1007/978-1-4613-0007-6
[18] Li, J.; Tang, M., A BSDE approach to stochastic differential games with regime switching, Math Probl Eng, 2021, 9930142, 2021 · Zbl 1512.91013 · doi:10.1155/2021/9930142
[19] Lions, P.; Menaldi, J., Optimal control of stochastic integrals and Hamilton-Jacobi-Bellman equations. I., SIAM J Control Optim, 20, 1, 58-81, 1982 · Zbl 0478.93069 · doi:10.1137/0320006
[20] Lv, S., Two-player zero-sum stochastic differential games with regime switching, Automatica, 114, 2020 · Zbl 1441.91010 · doi:10.1016/j.automatica.2020.108819
[21] Ma, C.; Zhao, H., Optimal control of probability on a target set for continuous-time Markov chains, IEEE Trans Autom Control, 69, 2, 1202-1209, 2024 · Zbl 07884279 · doi:10.1109/TAC.2023.3278789
[22] Menoukeu-Pamen, O.; Momeya, RH; Momeya, R., A maximum principle for Markov regime-switching forward-backward stochastic differential games and applications, Math Methods Oper Res, 85, 349-388, 2017 · Zbl 1377.93178 · doi:10.1007/s00186-017-0574-4
[23] Øksendal, B.; Sulem, A., Portfolio optimization under model uncertainty and BSDE games, Quant Finance, 11, 11, 1665-1674, 2011 · Zbl 1277.91159 · doi:10.1080/14697688.2011.615219
[24] Peng S (1997) BSDE and stochastic optimizations. In: Yan J, Peng S, Fang S, Wu L (eds) Topic in stochastic analysis, Sh.2. Science Press, Beijing (in Chinese)
[25] Savku, E., A stochastic control approach for constrained stochastic differential games with jumps and regimes, Mathematics, 11, 14, 3043, 2023 · doi:10.3390/math11143043
[26] Savku, E.; Weber, G., Stochastic differential games for optimal investment problems in a Markov regime-switching jump-diffusion market, Ann Oper Res, 312, 1171-1196, 2022 · Zbl 1492.91339 · doi:10.1007/s10479-020-03768-5
[27] Shao J (2019) The existence of optimal feedback controls for stochastic dynamical systems with regime-switching. arXiv:1906.08425
[28] Song, Q.; Yin, G.; Zhang, Z., Numerical solutions for stochastic differential games with regime switching, IEEE Trans Autom Control, 53, 2, 509-521, 2008 · Zbl 1367.91028 · doi:10.1109/TAC.2007.915169
[29] Wei, L.; Wu, Z.; Zhao, H., Sobolev weak solutions of the Hamilton-Jacobi-Bellman equations, SIAM J Control Optim, 52, 3, 1499-1526, 2014 · Zbl 1295.93078 · doi:10.1137/120889174
[30] Yin, G.; Zhang, Q., Continuous-time Markov chains and applications: a two-time-scale approach, 2012, New York: Springer, New York · doi:10.1007/978-1-4614-4346-9
[31] Yin, G.; Zhu, C., Hybrid switching diffusions: properties and applications, 2010, New York: Springer, New York · Zbl 1279.60007 · doi:10.1007/978-1-4419-1105-6
[32] Yong, J.; Zhou, X., Stochastic controls: Hamiltonian systems and HJB equations, 1999, New York: Springer, New York · Zbl 0943.93002 · doi:10.1007/978-1-4612-1466-3
[33] Zhu, C., Optimal control of the risk process in a regime-switching environment, Automatica, 47, 8, 1570-1579, 2011 · Zbl 1226.93143 · doi:10.1016/j.automatica.2011.03.007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.