×

Almost nonnegative Ricci curvature and new vanishing theorems for genera. (English) Zbl 1535.53041

A sequence of Riemannian metrics \(\{g_i\}_{i \in \mathbb{N}}\) on a smooth manifold \(M\) is said to have almost non-negative Ricci curvature if the Ricci curvature of the \(i\)-th metric \(g_i\) is bounded below by \(-1\) while its diameter is bounded above by \(1/i\). Recall that the Todd genus of a complex manifold \(M\) of complex dimension \(n\) is defined by the alternating sum \(\sum_{p=0}^n (-1)^p\dim H^{0,p}(M,\mathbb{C})\) where \(H^{0,p}(M,\mathbb{C})\) denotes the Dolbeault cohomology group of \(M\).
The authors prove (A) that a compact complex manifold with an infinite fundamental group that admits a sequence of Kähler metrics with almost non-negative Ricci curvature has a vanishing Todd genus. The proof is given in the second section of the article.
Inspired by a result of J. Lott [J. Geom. Anal. 10, No. 3, 529–543 (2000; Zbl 1047.53024)] that a compact spin manifold that admits a sequence of metrics with almost nonnegative sectional curvature has vanishing \(\hat{A}\)-genus, the authors prove (B) that a compact spin manifold \(M^{4n}\) with an infinite fundamental group that admits a sequence of metrics with almost nonnegative Ricci curvature has vanishing \(\hat{A}\)-genus. The proof of (A) is given in the second section of the article. The details of the proof of (B) will be similar and are sketched there only in outline.
The fundamental group of \(M\) contains a finite index nilpotent subgroup, thus \(M\) has a finite cover \(M_1\) whose fundamental group is nilpotent. The authors argue that \(\pi_1(M_1)\) contains a nested sequence of finite index subgroups \(G_j\) whose index tends to infinity. Following an online forum post by S. Ivanov [“Diameter of \(m\)-fold cover”, https://mathoverflow.net/questions/7732/diameter-of-m-fold-cover/16939#16939], the authors show the diameter of the pullback of \(g_i\) to the \([\pi_1(M_1),G_j]\)-fold cover \(M_j\) of \(M_1\) is bounded by \([\pi_1(M_1),G_j]\) times the diameter of the pullback of \(g_i\) to \(M_1\).
Crucially, the size of the index of \(\partial+\partial^*\) for the lift of \(g_i\) is bounded on \(M_j\) by a bound \(C(n)\) that depends only on the dimension of \(M\). This follows from [P. Li, Ann. Sci. Éc. Norm. Supér. (4) 13, 451–468 (1980; Zbl 0466.53023)] and an argument using the Bochner technique. Since the size of the index of \(\partial+\partial^*\) on \(M_j\) is equal to the size of the index of \(\partial+\partial^*\) on \(M_1\) times \([\pi_1(M_1),G_j]\) it follows the size of the index of \(\partial+\partial^*\) on \(M_1\) is bounded above by \(C(n)/[\pi_1(M_1),G_j]\) which tends to zero as \(j\) tends to infinity. Hence the size of the index of \(\partial+\partial^*\) on \(M_1\) vanishes, and the Todd genus of \(M_1\) vanishes, and likewise for \(M\).

MathOverflow Questions:

Diameter of m-fold cover

MSC:

53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
53C27 Spin and Spin\({}^c\) geometry
53C55 Global differential geometry of Hermitian and Kählerian manifolds
57M05 Fundamental group, presentations, free differential calculus

Software:

MathOverflow

References:

[1] Anderson, MT, Hausdorff perturbations of Ricci-flat manifolds and the splitting theorem, Duke Math. J., 68, 1, 67-82 (1992) · Zbl 0767.53029 · doi:10.1215/S0012-7094-92-06803-7
[2] Ballmann, W.: Lectures on Kähler manifolds. ESI Lectures in Mathematics and Physics. European Mathematical Society (EMS), Zürich (2006) · Zbl 1101.53042
[3] Bazzoni, G.; Lupton, G.; Oprea, J., Homotopy invariants and almost non-negative curvature, Math. Z., 300, 2, 1117-1140 (2022) · Zbl 1489.55006 · doi:10.1007/s00209-021-02779-7
[4] Bérard, P.H.: From vanishing theorems to estimating theorems: the Bochner technique revisited. Bull. Am. Math. Soc. (N.S.) 19(2), 371-406 (1988) · Zbl 0662.53037
[5] Breuillard, E.; Green, B.; Tao, T., The structure of approximate groups, Publ. Math. Inst. Hautes Études Sci., 116, 115-221 (2012) · Zbl 1260.20062 · doi:10.1007/s10240-012-0043-9
[6] Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry. Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence (2001) · Zbl 0981.51016
[7] Burago, Yu., Gromov, M., Perelman, G.: A. D. Aleksandrov spaces with curvatures bounded below. Uspekhi Mat. Nauk 47(2(284)), 3-51, 222 (1992) · Zbl 0802.53018
[8] Cheeger, J.; Colding, TH, On the structure of spaces with Ricci curvature bounded below. I, J. Differ. Geom., 46, 3, 406-480 (1997) · Zbl 0902.53034 · doi:10.4310/jdg/1214459974
[9] Cheeger, J., Gromoll, D.: The splitting theorem for manifolds of nonnegative Ricci curvature. J. Differ. Geom. 6, 119-128 (1971/1972) · Zbl 0223.53033
[10] Chen, X., Han, F.: New Bochner type theorems. Math. Ann. (2023)
[11] Colding, TH, Ricci curvature and volume convergence, Ann. Math. (2), 145, 3, 477-501 (1997) · Zbl 0879.53030 · doi:10.2307/2951841
[12] Fang, F., Kähler manifolds with almost non-negative bisectional curvature, Asian J. Math., 6, 3, 385-398 (2002) · Zbl 1041.53043 · doi:10.4310/AJM.2002.v6.n3.a1
[13] Fukaya, K.; Yamaguchi, T., The fundamental groups of almost non-negatively curved manifolds, Ann. Math. (2), 136, 2, 253-333 (1992) · Zbl 0770.53028 · doi:10.2307/2946606
[14] Gallot, S.: Inégalités isopérimétriques, courbure de Ricci et invariants géométriques. II. C. R. Acad. Sci. Paris Sér. I Math. 296(8), 365-368 (1983) · Zbl 0535.53035
[15] Gromov, M., Curvature, diameter and Betti numbers, Comment. Math. Helv., 56, 2, 179-195 (1981) · Zbl 0467.53021 · doi:10.1007/BF02566208
[16] Gromov, M.: Volume and bounded cohomology. Inst. Hautes Études Sci. Publ. Math. 56, 5-99 (1983) · Zbl 0516.53046
[17] Hall, M. Jr, A topology for free groups and related groups, Ann. Math. (2), 52, 127-139 (1950) · Zbl 0041.36210 · doi:10.2307/1969513
[18] Hirsch, KA, On infinite soluble groups. IV, J. Lond. Math. Soc., 27, 81-85 (1952) · Zbl 0046.02003 · doi:10.1112/jlms/s1-27.1.81
[19] Hirzebruch, F., Topological Methods in Algebraic Geometry. Classics in Mathematics (1995), Berlin: Springer, Berlin
[20] Ivanov, S.: Diameter of m-fold cover. MathOverflow. https://mathoverflow.net/q/16939 (version: 2010-03-03)
[21] Kapovitch, V.; Lott, J., On noncollapsed almost Ricci-flat 4-manifolds, Am. J. Math., 141, 3, 737-755 (2019) · Zbl 1417.53038 · doi:10.1353/ajm.2019.0015
[22] Kapovitch, V.; Petrunin, A.; Tuschmann, W., Nilpotency, almost nonnegative curvature, and the gradient flow on Alexandrov spaces, Ann. Math. (2), 171, 1, 343-373 (2010) · Zbl 1192.53040 · doi:10.4007/annals.2010.171.343
[23] Kapovitch, V., Wilking, B.: Structure of fundamental groups of manifolds with Ricci curvature bounded below. arXiv e-prints 1105.5955v2 (2011)
[24] Li, P., On the Sobolev constant and the \(p\)-spectrum of a compact Riemannian manifold, Ann. Sci. École Norm. Sup. (4), 13, 4, 451-468 (1980) · Zbl 0466.53023 · doi:10.24033/asens.1392
[25] Liu, Z.; Shen, ZM, On the Betti numbers of Alexandrov spaces, Ann. Global Anal. Geom., 12, 2, 123-133 (1994) · Zbl 0824.53041 · doi:10.1007/BF02108293
[26] Lott, J., \( \hat{A} \)-genus and collapsing, J. Geom. Anal., 10, 3, 529-543 (2000) · Zbl 1047.53024 · doi:10.1007/BF02921948
[27] Lück, W., Approximating \(L^2\)-invariants by their finite-dimensional analogues, Geom. Funct. Anal., 4, 4, 455-481 (1994) · Zbl 0853.57021 · doi:10.1007/BF01896404
[28] Lück, W.: \(L^2\)-invariants: theory and applications to geometry and \(K\)-theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 44. Springer, Berlin (2002) · Zbl 1009.55001
[29] Mitsuishi, A.; Yamaguchi, T., Good coverings of Alexandrov spaces, Trans. Am. Math. Soc., 372, 11, 8107-8130 (2019) · Zbl 1432.53089 · doi:10.1090/tran/7849
[30] Petersen, P.: Riemannian geometry, Graduate Texts in Mathematics, vol. 171, 2nd edn. Springer, New York (2006) · Zbl 1220.53002
[31] Rosenberg, J., Stolz, S.: A “stable” version of the Gromov-Lawson conjecture. In: The Čech centennial (Boston, MA, 1993), Contemp. Math., vol. 181, pp. 405-418. Amer. Math. Soc., Providence (1995) · Zbl 0818.53057
[32] Yamaguchi, T.: A convergence theorem in the geometry of Alexandrov spaces. In: Actes de la Table Ronde de Géométrie Différentielle (Luminy, 1992), Sémin. Congr., vol. 1, pp. 601-642. Soc. Math. France, Paris (1996) · Zbl 0885.53041
[33] Zhang, Y., Kähler manifolds with almost non-negative Ricci curvature, Chin. Ann. Math. Ser. B, 28, 4, 421-428 (2007) · Zbl 1134.53041 · doi:10.1007/s11401-005-0584-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.