×

Effects of electrostatic interaction on clustering and collision of bidispersed inertial particles in homogeneous and isotropic turbulence. (English) Zbl 1531.76045

Summary: In sandstorms and thunderclouds, turbulence-induced collisions between solid particles and ice crystals lead to inevitable triboelectrification. The charge segregation is usually size dependent, with small particles charged negatively and large particles charged positively. In this work, we perform numerical simulations to study the influence of charge segregation on the dynamics of bidispersed inertial particles in turbulence. Direct numerical simulations of homogeneous isotropic turbulence are performed with the Taylor Reynolds number \(Re_\lambda = 147.5\), while particles are subjected to both electrostatic interactions and fluid drag, with Stokes numbers of 1 and 10 for small and large particles, respectively. Coulomb repulsion/attraction is shown to effectively inhibit/enhance particle clustering within a short range. Besides, the mean relative velocity between same-size particles is found to rise as the particle charge increases because of the exclusion of low-velocity pairs, while the relative velocity between different-size particles is almost unaffected, emphasizing the dominant roles of differential inertia. The mean Coulomb-turbulence parameter, \(Ct_0\), is then defined to characterize the competition between the Coulomb potential energy and the mean relative kinetic energy. In addition, a model is proposed to quantify the rate at which charged particles approach each other and to capture the transition of the particle relative motion from the turbulence-dominated regime to the electrostatic-dominated regime. Finally, the probability distribution function of the approach rate between particle pairs is examined, and its dependence on the Coulomb force is further discussed using the extended Coulomb-turbulence parameter.

MSC:

76F05 Isotropic turbulence; homogeneous turbulence
76F25 Turbulent transport, mixing

References:

[1] Ababaei, A., Rosa, B., Pozorski, J. & Wang, L.-P.2021On the effect of lubrication forces on the collision statistics of cloud droplets in homogeneous isotropic turbulence. J. Fluid Mech.918, A22. · Zbl 1492.76112
[2] Arguedas-Leiva, J.-A., Słomka, J., Lalescu, C.C., Stocker, R. & Wilczek, M.2022Elongation enhances encounter rates between phytoplankton in turbulence. Proc. Natl Acad. Sci. USA119 (32), e2203191119.
[3] Ayala, O., Rosa, B. & Wang, L.-P.2008aEffects of turbulence on the geometric collision rate of sedimenting droplets. Part 2. Theory and parameterization. New J. Phys.10 (7), 075016.
[4] Ayala, O., Rosa, B., Wang, L.-P. & Grabowski, W.W.2008bEffects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation. New J. Phys.10 (7), 075015.
[5] Baker, L., Frankel, A., Mani, A. & Coletti, F.2017Coherent clusters of inertial particles in homogeneous turbulence. J. Fluid Mech.833, 364-398. · Zbl 1419.76237
[6] Balachandar, S. & Eaton, J.K.2010Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech.42, 111-133. · Zbl 1345.76106
[7] Balkovsky, E., Falkovich, G. & Fouxon, A.2001Intermittent distribution of inertial particles in turbulent flows. Phys. Rev. Lett.86 (13), 2790.
[8] Bec, J., Biferale, L., Cencini, M., Lanotte, A., Musacchio, S. & Toschi, F.2007Heavy particle concentration in turbulence at dissipative and inertial scales. Phys. Rev. Lett.98 (8), 084502.
[9] Bec, J., Biferale, L., Cencini, M., Lanotte, A.S. & Toschi, F.2011Spatial and velocity statistics of inertial particles in turbulent flows. J. Phys.: Conf. Ser.333, 012003.
[10] Bewley, G.P., Saw, E.-W. & Bodenschatz, E.2013Observation of the sling effect. New J. Phys.15 (8), 083051.
[11] Boutsikakis, A., Fede, P. & Simonin, O.2022Effect of electrostatic forces on the dispersion of like-charged solid particles transported by homogeneous isotropic turbulence. J. Fluid Mech.938, A33. · Zbl 07493048
[12] Boutsikakis, A., Fede, P. & Simonin, O.2023Quasi-periodic boundary conditions for hierarchical algorithms used for the calculation of inter-particle electrostatic interactions. J. Comput. Phys.472, 111686. · Zbl 07620369
[13] Bragg, A.D. & Collins, L.R.2014New insights from comparing statistical theories for inertial particles in turbulence. II. Relative velocities. New J. Phys.16 (5), 055014.
[14] Bragg, A.D., Hammond, A.L., Dhariwal, R. & Meng, H.2022Hydrodynamic interactions and extreme particle clustering in turbulence. J. Fluid Mech.933, A31. · Zbl 1514.76040
[15] Calzavarini, E., Cencini, M., Lohse, D. & Toschi, F.2008Quantifying turbulence-induced segregation of inertial particles. Phys. Rev. Lett.101 (8), 084504.
[16] Chun, J., Koch, D.L., Rani, S.L., Ahluwalia, A. & Collins, L.R.2005Clustering of aerosol particles in isotropic turbulence. J. Fluid Mech.536, 219-251. · Zbl 1098.76071
[17] Deserno, M. & Holm, C.1998How to mesh up ewald sums. I. A theoretical and numerical comparison of various particle mesh routines. J. Chem. Phys.109 (18), 7678-7693.
[18] Di Renzo, M. & Urzay, J.2018Aerodynamic generation of electric fields in turbulence laden with charged inertial particles. Nat. Commun.9, 1676.
[19] Falkovich, G., Fouxon, A. & Stepanov, M.G.2002Acceleration of rain initiation by cloud turbulence. Nature419 (6903), 151-154.
[20] Falkovich, G., Gawedzki, K. & Vergassola, M.2001Particles and fields in fluid turbulence. Rev. Mod. Phys.73 (4), 913. · Zbl 1205.76133
[21] Falkovich, G. & Pumir, A.2007Sling effect in collisions of water droplets in turbulent clouds. J. Atmos. Sci.64 (12), 4497-4505.
[22] Fincham, D.1994Optimisation of the ewald sum for large systems. Mol. Simul.13 (1), 1-9.
[23] Forward, K.M., Lacks, D.J. & Sankaran, R.M.2009Charge segregation depends on particle size in triboelectrically charged granular materials. Phys. Rev. Lett.102 (2), 028001.
[24] Gimbutas, Z. & Greengard, L.2015Computational software: simple FMM libraries for electrostatics, slow viscous flow, and frequency-domain wave propagation. Commun. Comput. Phys.18 (2), 516-528. · Zbl 1388.65003
[25] Goto, S. & Vassilicos, J.C.2006Self-similar clustering of inertial particles and zero-acceleration points in fully developed two-dimensional turbulence. Phys. Fluids18 (11), 115103. · Zbl 1146.76397
[26] Goto, S. & Vassilicos, J.C.2008Sweep-stick mechanism of heavy particle clustering in fluid turbulence. Phys. Rev. Lett.100 (5), 054503.
[27] Grabowski, W.W. & Wang, L.-P.2013Growth of cloud droplets in a turbulent environment. Annu. Rev. Fluid Mech.45, 293-324. · Zbl 1359.76293
[28] Greengard, L. & Rokhlin, V.1987A fast algorithm for particle simulations. J. Comput. Phys.73 (2), 325-348. · Zbl 0629.65005
[29] Greengard, L. & Rokhlin, V.1997A new version of the fast multipole method for the laplace equation in three dimensions. Acta Numerica6, 229-269. · Zbl 0889.65115
[30] Gustavsson, K. & Mehlig, B.2014Relative velocities of inertial particles in turbulent aerosols. J. Turbul.15 (1), 34-69.
[31] Harper, J.M., Cimarelli, C., Cigala, V., Kueppers, U. & Dufek, J.2021Charge injection into the atmosphere by explosive volcanic eruptions through triboelectrification and fragmentation charging. Earth Planet. Sci. Lett.574, 117162.
[32] Harrison, R.G., Nicoll, K.A., Ambaum, M.H.P., Marlton, G.J., Aplin, K.L. & Lockwood, M.2020Precipitation modification by ionization. Phys. Rev. Lett.124 (19), 198701.
[33] Ireland, P.J., Bragg, A.D. & Collins, L.R.2016aThe effect of reynolds number on inertial particle dynamics in isotropic turbulence. Part 1. Simulations without gravitational effects. J. Fluid Mech.796, 617-658. · Zbl 1462.76077
[34] Ireland, P.J., Bragg, A.D. & Collins, L.R.2016bThe effect of reynolds number on inertial particle dynamics in isotropic turbulence. Part 2. Simulations with gravitational effects. J. Fluid Mech.796, 659-711. · Zbl 1462.76078
[35] Jaworek, A., Marchewicz, A., Sobczyk, A.T., Krupa, A. & Czech, T.2018Two-stage electrostatic precipitators for the reduction of \({\pm }2. 5\) Particle emission. Prog. Energy Combust. Sci.67, 206-233.
[36] Karnik, A.U. & Shrimpton, J.S.2012Mitigation of preferential concentration of small inertial particles in stationary isotropic turbulence using electrical and gravitational body forces. Phys. Fluids24 (7), 073301.
[37] Lee, V., Waitukaitis, S.R., Miskin, M.Z. & Jaeger, H.M.2015Direct observation of particle interactions and clustering in charged granular streams. Nat. Phys.11 (9), 733-737.
[38] Liu, Y., Shen, L., Zamansky, R. & Coletti, F.2020Life and death of inertial particle clusters in turbulence. J. Fluid Mech.902, R1. · Zbl 1460.76845
[39] Lu, J., Nordsiek, H., Saw, E.W. & Shaw, R.A.2010aClustering of charged inertial particles in turbulence. Phys. Rev. Lett.104 (18), 184505.
[40] Lu, J., Nordsiek, H. & Shaw, R.A.2010bClustering of settling charged particles in turbulence: theory and experiments. New J. Phys.12 (12), 123030.
[41] Lu, J. & Shaw, R.A.2015Charged particle dynamics in turbulence: theory and direct numerical simulations. Phys. Fluids27 (6), 065111.
[42] Marshall, J.S.2009Discrete-element modeling of particulate aerosol flows. J. Comput. Phys.228 (5), 1541-1561. · Zbl 1410.76331
[43] Marshall, J.S. & Li, S.2014Adhesive Particle Flow. Cambridge University Press.
[44] Mathai, V., Calzavarini, E., Brons, J., Sun, C. & Lohse, D.2016Microbubbles and microparticles are not faithful tracers of turbulent acceleration. Phys. Rev. Lett.117 (2), 024501.
[45] Maxey, M.R.1987The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech.174, 441-465. · Zbl 0617.76058
[46] Maxey, M.R. & Riley, J.J.1983Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids26 (4), 883-889. · Zbl 0538.76031
[47] Van Minderhout, B., Van Huijstee, J.C.A., Rompelberg, R.M.H., Post, A., Peijnenburg, A.T.A., Blom, P. & Beckers, J.2021Charge of clustered microparticles measured in spatial plasma afterglows follows the smallest enclosing sphere model. Nat. Commun.12 (1), 4692.
[48] Pan, L. & Padoan, P.2010Relative velocity of inertial particles in turbulent flows. J. Fluid Mech.661, 73-107. · Zbl 1205.76273
[49] Pumir, A. & Wilkinson, M.2016Collisional aggregation due to turbulence. Annu. Rev. Condens. Matt. Phys.7, 141-170.
[50] Qian, X., Ruan, X. & Li, S.2022Effect of interparticle dipolar interaction on pore clogging during microfiltration. Phys. Rev. E105 (1), 015102.
[51] Reade, W.C. & Collins, L.R.2000Effect of preferential concentration on turbulent collision rates. Phys. Fluids12 (10), 2530-2540. · Zbl 1184.76446
[52] Ruan, X., Chen, S. & Li, S.2021Effect of long-range coulomb repulsion on adhesive particle agglomeration in homogeneous isotropic turbulence. J. Fluid Mech.915, A131. · Zbl 1461.76225
[53] Ruan, X., Gorman, M.T., Li, S. & Ni, R.2022Surface-resolved dynamic simulation of charged non-spherical particles. J. Comput. Phys.466, 111381. · Zbl 07561064
[54] Ruan, X. & Li, S.2022Effect of electrostatic interaction on impact breakage of agglomerates formed by charged dielectric particles. Phys. Rev. E106 (3), 034905.
[55] Saw, E.-W., Salazar, J.P.L.C., Collins, L.R. & Shaw, R.A.2012Spatial clustering of polydisperse inertial particles in turbulence. I. Comparing simulation with theory. New J. Phys.14 (10), 105030.
[56] Shaw, R.A.2003Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech.35 (1), 183-227. · Zbl 1125.76401
[57] Squires, K.D. & Eaton, J.K.1991Preferential concentration of particles by turbulence. Phys. Fluids A3 (5), 1169-1178.
[58] Steinpilz, T., Joeris, K., Jungmann, F., Wolf, D., Brendel, L., Teiser, J., Shinbrot, T. & Wurm, G.2020Electrical charging overcomes the bouncing barrier in planet formation. Nat. Phys.16 (2), 225-229.
[59] Sundaram, S. & Collins, L.R.1997Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J. Fluid Mech.335, 75-109. · Zbl 0901.76089
[60] Toschi, F. & Bodenschatz, E.2009Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech.41, 375-404. · Zbl 1157.76020
[61] Van Atta, C.W. & Antonia, R.A.1980Reynolds number dependence of skewness and flatness factors of turbulent velocity derivatives. Phys. Fluids23 (2), 252-257.
[62] Vincent, A. & Meneguzzi, M.1991The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech.225, 1-20. · Zbl 0721.76036
[63] Voßkuhle, M., Pumir, A., Lévêque, E. & Wilkinson, M.2014Prevalence of the sling effect for enhancing collision rates in turbulent suspensions. J. Fluid Mech.749, 841-852.
[64] Waitukaitis, S.R., Lee, V., Pierson, J.M., Forman, S.L. & Jaeger, H.M.2014Size-dependent same-material tribocharging in insulating grains. Phys. Rev. Lett.112 (21), 218001.
[65] Wang, L.-P., Wexler, A.S. & Zhou, Y.2000Statistical mechanical description and modelling of turbulent collision of inertial particles. J. Fluid Mech.415, 117-153. · Zbl 0964.76086
[66] Wilkinson, M. & Mehlig, B.2005Caustics in turbulent aerosols. Europhys. Lett.71 (2), 186.
[67] Wilkinson, M., Mehlig, B. & Bezuglyy, V.2006Caustic activation of rain showers. Phys. Rev. Lett.97 (4), 048501.
[68] Yao, Y. & Capecelatro, J.2018Competition between drag and coulomb interactions in turbulent particle-laden flows using a coupled-fluid-ewald-summation based approach. Phys. Rev. Fluids3 (3), 034301.
[69] Yeung, P.K. & Zhou, Y.1997Universality of the Kolmogorov constant in numerical simulations of turbulence. Phys. Rev. E56 (2), 1746.
[70] Yoshimoto, H. & Goto, S.2007Self-similar clustering of inertial particles in homogeneous turbulence. J. Fluid Mech.577, 275-286. · Zbl 1110.76023
[71] Zhang, H., Cui, Y. & Zheng, X.2023How electrostatic forces affect particle behaviour in turbulent channel flows. J. Fluid Mech.967, A8. · Zbl 1518.76056
[72] Zhang, H. & Zhou, Y.-H.2020Reconstructing the electrical structure of dust storms from locally observed electric field data. Nat. Commun.11 (1), 5072.
[73] Zhao, K., Pomes, F., Vowinckel, B., Hsu, T.-J., Bai, B. & Meiburg, E.2021Flocculation of suspended cohesive particles in homogeneous isotropic turbulence. J. Fluid Mech.921, A17. · Zbl 1493.76113
[74] Zhou, Y., Wexler, A.S. & Wang, L.-P.2001Modelling turbulent collision of bidisperse inertial particles. J. Fluid Mech.433, 77-104. · Zbl 0991.76088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.