×

Discrete-element modeling of particulate aerosol flows. (English) Zbl 1410.76331

Summary: A multiple-time step computational approach is presented for efficient discrete-element modeling of aerosol flows containing adhesive solid particles. Adhesive aerosol particulates are found in numerous dust and smoke contamination problems, including smoke particle transport in the lungs, particle clogging of heat exchangers in construction vehicles, industrial nanoparticle transport and filtration systems, and dust fouling of electronic systems and MEMS components. Dust fouling of equipment is of particular concern for potential human occupation on dusty planets, such as Mars. The discrete-element method presented in this paper can be used for prediction of aggregate structure and breakup, for prediction of the effect of aggregate formation on the bulk fluid flow, and for prediction of the effects of small-scale flow features (e.g., due to surface roughness or MEMS patterning) on the aggregate formation. After presentation of the overall computational structure, the forces and torques acting on the particles resulting from fluid motion, particle-particle collision, and adhesion under van der Waals forces are reviewed. The effect of various parameters of normal collision and adhesion of two particles are examined in detail. The method is then used to examine aggregate formation and particle clogging in pipe and channel flow.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
Full Text: DOI

References:

[1] Bagi, K.; Kuhn, M. R., A definition of particle rolling in a granular assembly in terms of particle translations and rotations, Journal of Applied Mechanics, 71, 493-501 (2004) · Zbl 1111.74315
[2] Bardet, J. P., Observations on the effects of particle rotations on the failure of idealized granular materials, Mechanics of Materials, 18, 2, 159-182 (1994)
[3] Barnocky, G.; Davis, R. H., The influence of pressure-dependent density and viscosity on the elastohydrodynamic collision and rebound of two spheres, Journal of Fluid Mechanics, 209, 501-519 (1989)
[4] Brilliantov, N. V.; Pöschel, T., Rolling as a ‘continuing collision’, European Physics Journal B, 12, 299-301 (1999)
[5] Brilliantov, N. V.; Spahn, F.; Hertzsch, J.-M.; Pöschel, T., Model for collisions in granular gases, Physical Review E, 53, 5, 5382-5392 (1996)
[6] Burd, A. B.; Jackson, G. A., Modeling steady-state particle size spectra, Environmental Science and Technology, 36, 323-327 (2002)
[7] Chokshi, A.; Tielens, A. G.G. M.; Hollenbach, D., Dust coagulation, Astrophysical Journal, 407, 806-819 (1993)
[8] Cleary, P. W.; Metcalfe, G.; Liffman, K., How well do discrete element granular flow models capture the essentials of mixing processes?, Applied Mathematical Modeling, 22, 995-1008 (1998)
[9] Crowe, C. T.; Sommerfeld, M.; Tsuji, Y., Multiphase Flows with Droplets and Particles (1998), CRC Press: CRC Press Boca Raton
[10] Cundall, P. A.; Strack, O. D.L., A discrete numerical model for granular assembles, Geotechnique, 29, 1, 47-65 (1979)
[11] Di Felice, R., The voidage function for fluid-particle interaction systems, International Journal of Multiphase Flow, 20, 153-159 (1994) · Zbl 1134.76530
[12] Dominik, C.; Tielens, A. G.G. M., Resistance to rolling in the adhesive contact of two elastic spheres, Philosophical Magazine A, 92, 3, 783-803 (1995)
[13] Dominik, C.; Tielens, A. G.G. M., The physics of dust coagulation and the structure of dust aggregates in space, Astrophysical Journal, 480, 647-673 (1997)
[14] Druzhinin, O. A.; Ostrovsky, L. A., The influence of Basset force on particle dynamics in two-dimensional flows, Physica D, 76, 34-43 (1994) · Zbl 1194.76042
[15] Hampton, R. E.; Mammoli, A. A.; Graham, A. L.; Tetlow, N.; Altobelli, S. A., Migration of particles undergoing pressure-driven flow in a circular conduit, Journal of Rheology, 41, 621-640 (1997)
[16] Han, M.; Kim, C.; Kim, M.; Lee, S., Particle migration in tube flow of suspensions, Journal of Rheology, 43, 5, 1157-1174 (1999)
[17] Hertz, H., Über die Berührung fester elastische Körper, Journal of Reine und Angewandte Mathematik, 92, 156-171 (1882) · JFM 14.0807.01
[18] Ho, B. P.; Leal, L. G., Inertial migration of rigid spheres in two-dimensional unidirectional flows, Journal of Fluid Mechanics, 65, 365-400 (1974) · Zbl 0284.76076
[19] Hu, K. C.; Mei, R., Particle collision rate in fluid flows, Physics of Fluids, 10, 4, 1028-1030 (1998)
[20] Iwashita, K.; Oda, M., Rolling resistance at contacts in simulation of shear band development by DEM, Journal of Engineering Mechanics, 124, 3, 285-292 (1998)
[21] Johnson, K. L., Contact Mechanics (1985), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0599.73108
[22] Johnson, K. L.; Kendall, K.; Roberts, A. D., Surface energy and the contact of elastic solids, Proceedings of the Royal Society of London A, 324, 301-313 (1971)
[23] Kim, H.; Arastoopour, H., Extension of kinetic theory to cohesive particle flow, Powder Technology, 122, 83-94 (2002)
[24] Koh, C. J.; Hookham, P.; Leal, L. G., An experimental investigation of concentrated suspension flows in a rectangular channel, Journal of Fluid Mechanics, 266, 1-32 (1994)
[25] Konstandopoulos, A., Deposit growth dynamics: particle sticking and scattering phenomena, Powder Technology, 109, 262-277 (2000)
[26] Kuhn, M. R.; Bagi, K., Contact rolling and deformation in granular media, International Journal of Solids and Structures, 41, 5793-5820 (2004) · Zbl 1112.74363
[27] Leighton, D.; Acrivos, A., The shear-induced migration of particles in concentrated suspensions, Journal of Fluid Mechanics, 181, 415-439 (1987)
[28] Mädler, L., Liquid-fed aerosol reactors for one-step synthesis of nano-structured particles, KONA, 22, 107-120 (2004)
[29] Marshall, J. S., Particle dispersion in a turbulent vortex core, Physics of Fluids, 17, 2 (2005), 025104-1-025104-15 · Zbl 1187.76333
[30] Mikami, T.; Kamiya, H.; Horio, M., Numerical simulation of cohesive powder behavior in a fluidized bed, Chemical Engineering Science, 53, 10, 1927-1940 (1998)
[31] Mindlin, R. D., Compliance of elastic bodies in contact, Journal of Applied Mechanics, 16, 259-268 (1949) · Zbl 0034.26602
[32] Oda, M.; Konishi, J.; Nemat-Nasser, S., Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling, Mechanics of Materials, 1, 4, 269-283 (1982)
[33] Saffman, P. G., The lift on a small sphere in a slow shear flow, Journal of Fluid Mechanics, 22, 385-400 (1965) · Zbl 0218.76043
[34] Saffman, P. G., Corrigendum to ’The lift force on a small sphere in a slow shear flow’, Journal of Fluid Mechanics, 31, 624 (1968)
[35] Savkoor, A. R.; Briggs, G. A.D., The effect of tangential force on the contact of elastic solids in adhesion, Proceedings of the Royal Society of London A, 356, 103-114 (1977) · Zbl 0364.73095
[36] Segre, G.; Silberberg, A., Behavior of macroscopic rigid spheres in Poiseuille flow. Part 2. Experimental results and interpretation, Journal of Fluid Mechanics, 14, 136-157 (1962) · Zbl 0118.43203
[37] Smoluchowski, M. V., Versuch einer mathematischen theorie der koagulationskinetic kolloder losunggen, Zeitschrift of Physics and Chemistry, 92, 129 (1917)
[38] Tabor, D., The mechanism of rolling friction: the elastic range, Proceedings of the Royal Society of London A, 229, 198-220 (1955)
[39] Thornton, C., Interparticle sliding in the presence of adhesion, Journal Physics D: Applied Physics, 24, 1942-1946 (1991)
[40] Thornton, C.; Yin, K. K., Impact of elastic spheres with and without adhesion, Powder Technology, 65, 153-166 (1991)
[41] Tsuji, Y.; Tanaka, T.; Ishida, T., Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe, Powder Technology, 71, 239-250 (1992)
[42] Visser, J., Van der Waals and other cohesive forces affecting powder fluidization, Powder Technology, 58, 1-10 (1989)
[43] Weber, M. W.; Hoffman, D. K.; Hrenya, C. M., Discrete-particle simulations of cohesive granular flow using a square-well potential, Granular Matter, 6, 239-254 (2004) · Zbl 1152.76489
[44] Zhang, J. J.; Li, X. Y., Modeling particle-size distribution dynamics in a flocculation system, AIChE Journal, 49, 7, 1870-1882 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.