×

Block perturbation of symplectic matrices in Williamson’s theorem. (English) Zbl 1541.15008

The authors study the stability of symplectic matrices appearing in J. Williamson’s theorem [Am. J. Math. 58, 141–163 (1936; Zbl 0013.28401)], that states that for any \(2n\times 2n\) real positive definite matrix \(A\), there exists a \(2n\times 2n\) real symplectic matrix \(S\) such that \(S^\top A S = D\otimes D\), where \(D\) is an \(n\times n\) diagonal matrix with positive diagonal entries known as symplectic eigenvalues of \(A\).
Let \(A\) be a \(2n\times 2n\) real positive definite matrix and let \(H\) be an arbitrary \(2n\times 2n\) real symmetric matrix such that the perturbed matrix \(A+H\) is also positive definite. The authors show that any symplectic matrix \(\tilde S\) diagonalizing \(A+H\) in Williamson’s theorem is of the form \(\tilde S = SQ + \mathcal{O} (\|H\|)\), where \(S\) is any symplectic matrix diagonalizing \(A\) in Williamson’s theorem and \(Q\) has symplectic block diagonal form with block sizes given by twice the multiplicities of the symplectic eigenvalues of \(A\). This results in particular implies that the matrices \(S\) and \(\tilde S\) can be chosen so that \(\|\tilde S - S\| = \mathcal{O} (\|H\|)\).

MSC:

15A20 Diagonalization, Jordan forms
15B48 Positive matrices and their generalizations; cones of matrices
15A21 Canonical forms, reductions, classification
15A18 Eigenvalues, singular values, and eigenvectors
47A55 Perturbation theory of linear operators

Citations:

Zbl 0013.28401

References:

[1] Adesso, G., Serafini, A., and Illuminati, F., Extremal entanglement and mixedness in continuous variable systems. Phys. Rev. A70(2004), 022318.
[2] Arnold, V. I., Mathematical methods of classical mechanics, Springer, New York, 1989. · Zbl 0692.70003
[3] Bhatia, R. and Jain, T., On symplectic eigenvalues of positive definite matrices. J. Math. Phys.56(2015), 112201. · Zbl 1329.15048
[4] Bhatia, R. and Jain, T., A Schur-Horn theorem for symplectic eigenvalues. Linear Algebra Appl.599(2020), 133-139. · Zbl 1451.15012
[5] Bhatia, R. and Jain, T., Variational principles for symplectic eigenvalues. Canad. Math. Bull.64(2021), 553-559. · Zbl 1475.15021
[6] Chen, X.-Y., Gaussian relative entropy of entanglement. Phys. Rev. A71(2005), 062320.
[7] Degosson, M. A., Symplectic geometry and quantum mechanics, Springer Science & Business Media, Berlin, 2006. · Zbl 1098.81004
[8] Dutta, B., Mukunda, N., and Simon, R., The real symplectic groups in quantum mechanics and optics. Pramana45(1995), 471-497.
[9] Hofer, H. and Zehnder, E., Symplectic invariants and Hamiltonian dynamics, Birkhäuser, Basel, 2012.
[10] Hsiang, J.-T., Arısoy, O., and Hu, B.-L., Entanglement dynamics of coupled quantum oscillators in independent nonMarkovian baths. Entropy24(2022), 1814.
[11] Idel, M., Gaona, S. S., and Wolf, M. M., Perturbation bounds for Williamson’s symplectic normal form. Linear Algebra Appl.525(2017), 45-58. · Zbl 1365.15015
[12] Jain, T., Sums and products of symplectic eigenvalues. Linear Algebra Appl.631(2021), 67-82. · Zbl 1481.15019
[13] Jain, T. and Mishra, H. K., Derivatives of symplectic eigenvalues and a Lidskii type theorem. Canad. J. Math.74(2022), 457-485. · Zbl 1489.15018
[14] Mishra, H. K., First order sensitivity analysis of symplectic eigenvalues. Linear Algebra Appl.604(2020), 324-345. · Zbl 1447.15006
[15] Nicacio, F., Williamson theorem in classical, quantum, and statistical physics. Amer. J. Phys.89(2021), 1139-1151.
[16] Paradan, P.-E., The Horn cone associated with symplectic eigenvalues. C. R. Math. Acad. Sci. Paris360(2022), 1163-1168. · Zbl 1529.15011
[17] Parthasarathy, K. R., Symplectic dilations, Gaussian states and Gaussian channels. Indian J. Pure Appl. Math.46(2015), 419-439. · Zbl 1351.60040
[18] Salam, A., On theoretical and numerical aspects of symplectic Gram-Schmidt-like algorithms. Numer. Algorithms39(2005), 437-462. · Zbl 1111.65038
[19] Serafini, A., Quantum continuous variables: A primer of theoretical methods, CRC Press, Boca Raton, FL, 2017. · Zbl 1386.81005
[20] Simon, R., Chaturvedi, S., and Srinivasan, V., Congruences and canonical forms for a positive matrix: Application to the Schweinler-Wigner extremum principle. J. Math. Phys.40(1999), 3632-3642. · Zbl 0951.15011
[21] Son, N. T., Absil, P.-A., Gao, B., and Stykel, T., Computing symplectic eigenpairs of symmetric positive-definite matrices via trace minimization and Riemannian optimization. SIAM J. Matrix Anal. Appl.42(2021), 1732-1757. · Zbl 1480.15011
[22] Son, N. T. and Stykel, T., Symplectic eigenvalues of positive-semidefinite matrices and the trace minimization theorem. Electron. J. Linear Algebra38(2022), 607-616. · Zbl 1500.15008
[23] Williamson, J., On the algebraic problem concerning the normal forms of linear dynamical systems. Amer. J. Math.58(1936), 141-163. · JFM 62.1795.10
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.