×

Variational principles for symplectic eigenvalues. (English) Zbl 1475.15021

Summary: If \(A\) is a real \(2n \times 2n\) positive definite matrix, then there exists a symplectic matrix \(M\) such that \(M^T AM=\operatorname{diag}(D, D)\), where \(D\) is a positive diagonal matrix with diagonal entries \(d_1(A)\leqslant \cdots \leqslant d_n(A)\). We prove a maxmin principle for \(d_k(A)\) akin to the classical Courant-Fisher-Weyl principle for Hermitian eigenvalues and use it to derive an analogue of the Weyl inequality \(d_{i+j-1}(A+B)\geqslant d_i(A)+d_j(B)\).

MSC:

15A42 Inequalities involving eigenvalues and eigenvectors
15A18 Eigenvalues, singular values, and eigenvectors
15A45 Miscellaneous inequalities involving matrices
Full Text: DOI

References:

[1] Dutta, Arvind, B., Mukunda, N., and Simon, R., The real symplectic groups in quantum mechanics and optics. Pramana45(1995), 471-495.
[2] Bhatia, R., Matrix analysis . Graduate Texts in Mathematics, 169, Springer-Verlag, New York, 1997. http://dx.doi.org/10.1007/978-1-4612-0653-8 · Zbl 0863.15001
[3] Bhatia, R., Linear algebra to quantum cohomology: The story of Alfred Horn’s inequalities. Amer. Math. Monthly108(2001), 289-318. http://dx.doi.org/10.2307/2695237 · Zbl 1016.15014
[4] Bhatia, R., Some inequalities for eigenvalues and symplectic eigenvalues of positive definite matrices. Int. J. Math.30(2019), 1950055. http://dx.doi.org/10.1142/s0129167x19500551 · Zbl 1425.15015
[5] Bhatia, R. and Jain, T., On symplectic eigenvalues of positive definite matrices. J. Math. Phys.56(2015), 112201. http://dx.doi.org/10.1063/1.493582 · Zbl 1329.15048
[6] Bhatia, R. and Jain, T., A Schur-Horn theorem for symplectic eigenvalues. Linear Algebra Appl.599(2020), 133-139. http://dx.doi.org/10.1016/j.laa.2020.04.005 · Zbl 1451.15012
[7] De Gosson, M., Symplectic geometry and quantum mechanics . Operator Theory: Advances and Applications, 166, Advances in Partial Differential Equations (Basel), Birkhäuser, Verlag, Basel, 2006. http://dx.doi.org/10.1007/3-7643-7575-2 · Zbl 1098.81004
[8] Hiroshima, T., Additivity and multiplicativity properties of some Gaussian channels for Gaussian inputs. Phys. Rev. A73(2006), 012330.
[9] Hofer, H. and Zehnder, E., Symplectic invariants and Hamiltonian dynamics . Modern Birkhäuser Classics, Birkhäuser Verlag, Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0104-1 · Zbl 1223.37001
[10] Eisert, J., Tyc, T., Rudolph, T., Sanders, B. C., Gaussian quantum marginal problem. Comm. Math. Phys.280(2008), 263-280. http://dx.doi.org/10.1007/s00220-008-0442-4 · Zbl 1145.81019
[11] Jain, T. and Mishra, H. K., Derivatives of symplectic eigenvalues and a Lidskii type theorem. Preprint, 2020. arXiv:2004.11024
[12] Krbek, M., Tyc, T., and Vlach, J., Inequalities for quantum marginal problems with continuous variables. J. Math. Phys.55(2014), 062201-7. http://dx.doi.org/10.1063/1.4880198 · Zbl 1292.81139
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.