×

Properties of the solution set of a class of mixed variational inqualities. (English) Zbl 1511.90395

A class of mixed variational inequalities is established on nonempty closed convex subsets of real Euclidean spaces. One of the mappings involved is lower semicontinuous and the other is weakly homogeneous. Two new results on the nonemptiness and compactness of the solution set of the problem are established, and some examples are used to compare the results with those in the literature. It can be seen that new results improve some known related results.

MSC:

90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
Full Text: DOI

References:

[1] Addi, K.; Goeleven, D.; Daras, N.; Rassias, T., Operations Research, Engineering, and Cyber Security, Complementarity and variational inequalities in electronics, 1-43 (2017), Cham: Springer Optimization and Its Applications, Springer, Cham · Zbl 1375.94178
[2] Cottle, R. W.; Pang, J. S.; Stone, R. E., The Linear Complementarity Problem (2009), Philadelphia: Society for Industrial and Applied Mathematics, Philadelphia · Zbl 1192.90001
[3] Ferris, M. C.; Pang, J. S., Engineering and economic applications of complementarity problems, SIAM Rev, 39, 4, 669-713 (1997) · Zbl 0891.90158 · doi:10.1137/S0036144595285963
[4] Facchinei, F.; Pang, J. S., Finite-Dimensional Variational Inequalities and Complementarity Problems, I-II (2003), New York: Springer, New York · Zbl 1062.90002
[5] Konnov, I. V.; Volotskaya, E. O., Mixed variational inequalities and economic equilibrium problems, J. Appl. Math, 2, 6, 289-314 (2002) · Zbl 1029.47043 · doi:10.1155/S1110757X02106012
[6] Browder, F. E., On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces, Proc Natl Acad Sci U S A, 56, 2, 419-425 (1966) · Zbl 0143.36902 · doi:10.1073/pnas.56.2.419
[7] Lescarret, C., Cas d’addition des applications monotones maximales dans un espace de Hilbert, C. R. Acad. Sci. Paris., 261, 1160-1163 (1965) · Zbl 0138.08204
[8] Chadli, O.; Gwinner, J.; Ovcharova, N., On semicoercive variational-hemivariational inequalities-existence, approximation, and regularization, Vietnam J. Math, 46, 2, 329-342 (2018) · Zbl 1388.49005 · doi:10.1007/s10013-018-0282-2
[9] Ceng, L.-C.; Liou, Y.-C.; Wen, C.-F.; Hu, H.-Y.; He, L.; Cui, Y.-L., On the Hadamard well-posedness of generalized mixed variational inequalities in Banach spaces, J. Math, 2021, 1-9 (2021) · doi:10.1155/2021/9527107
[10] Goeleven, D., Existence and uniqueness for a linear mixed variational inequality arising in electrical circuits with transistors, J. Optim. Theory Appl, 138, 3, 397-406 (2008) · Zbl 1163.90761 · doi:10.1007/s10957-008-9395-1
[11] Jolaoso, L. O.; Shehu, Y.; Yao, J.-C., Inertial extragradient type method for mixed variational inequalities without monotonicity, Math. Comput. Simul., 192, 353-369 (2022) · Zbl 1540.90268 · doi:10.1016/j.matcom.2021.09.010
[12] Ju, X.; Che, H.; Li, C.; He, X., Solving mixed variational inequalities via a proximal neurodynamic network with applications, Neural Process Lett, 54, 1, 207-226 (2022) · doi:10.1007/s11063-021-10628-1
[13] Mu, W.; Fan, J., Existence results for solutions of mixed tensor variational inequalities, J Glob Optim, 82, 2, 389-412 (2022) · Zbl 1486.90199 · doi:10.1007/s10898-021-01080-5
[14] Ovcharova, N.; Gwinner, J., Semicoercive variational inequalities: from existence to numerical solutions of nonmonotone contact problems, J Optim Theory Appl, 171, 2, 422-439 (2016) · Zbl 1349.74136 · doi:10.1007/s10957-016-0969-z
[15] Tang, G. J.; Huang, N. J., Existence theorems of the variational-hemivariational inequalities, J Glob Optim, 56, 2, 605-622 (2013) · Zbl 1272.49019 · doi:10.1007/s10898-012-9884-5
[16] Tang, G. J.; Li, Y. S., Existence of solutions for mixed variational inequalities with perturbation in Banach spaces, Optim Lett, 14, 3, 637-651 (2020) · Zbl 1442.49013 · doi:10.1007/s11590-018-1366-3
[17] Tang, G. J.; Wan, Z.; Huang, N. J., Strong convergence of a projection-type method for mixed variational inequalities in Hilbert spaces, Numer. Funct. Anal. Optim, 39, 1-17 (2018)
[18] Tang, G. J.; Zhu, M.; Liu, H. W., A new extragradient-type method for mixed variational inequalities, Oper. Res. Lett, 43, 6, 567-572 (2015) · Zbl 1408.90290 · doi:10.1016/j.orl.2015.08.009
[19] Wang, M., The existence results and Tikhonov regularization method for generalized mixed variational inequalities in Banach spaces, Anal.Math.Phys, 7, 2, 151-163 (2017) · Zbl 1370.58007 · doi:10.1007/s13324-016-0134-8
[20] Wang, Z.; Xiao, Y.; Chen, Z., Degree theory for generalized mixed quasi-variational inequalities and its applications, J Optim Theory Appl, 187, 1, 43-64 (2020) · Zbl 1464.49007 · doi:10.1007/s10957-020-01748-0
[21] Wang, Z.; Chen, Z.; Xiao, Y.; Zhang, C., A new projection-type method for solving multi-valued mixed variational inequalities without monotonicity, Appl. Anal, 99, 9, 1453-1466 (2020) · Zbl 1456.49019 · doi:10.1080/00036811.2018.1538499
[22] Wang, Z. B.; Huang, N. J., Exceptional family of elements for a generalized set-valued variational inequality in Banach spaces, Optimization., 63, 2, 167-180 (2014) · Zbl 1302.49016 · doi:10.1080/02331934.2011.625030
[23] Yang, Z.-P.; Lin, G.-H., Variance-based single-call proximal extragradient algorithms for stochastic mixed variational inequalities, J Optim Theory Appl, 190, 2, 393-427 (2021) · Zbl 1472.65078 · doi:10.1007/s10957-021-01882-3
[24] Ju, X.; Che, H.; Li, C.; He, X.; Feng, G., Exponential convergence of a proximal projection neural network for mixed variational inequalities and applications, Neurocomputing., 454, 54-64 (2021) · doi:10.1016/j.neucom.2021.04.059
[25] Wang, Y.; Huang, Z.-H.; Qi, L., Global uniqueness and solvability of tensor variational inequalities, J Optim Theory Appl, 177, 1, 137-152 (2018) · Zbl 1409.90207 · doi:10.1007/s10957-018-1233-5
[26] Iusem, A.; Lara, F., Existence results for noncoercive mixed variational inequalities in finite dimensional spaces, J Optim Theory Appl, 183, 1, 122-138 (2019) · Zbl 1434.90204 · doi:10.1007/s10957-019-01548-1
[27] Grad, S. M.; Lara, F., Solving mixed variational inequalities beyond convexity, J Optim Theory Appl, 190, 2, 565-580 (2021) · Zbl 1475.90111 · doi:10.1007/s10957-021-01860-9
[28] Iusem, A.; Lara, F., A note on “Existence Results for Noncoercive Mixed Variational Inequalities in Finite Dimensional Spaces”, J. Optim. Theory Appl, 187, 2, 607-608 (2020) · Zbl 1468.90135 · doi:10.1007/s10957-020-01722-w
[29] Iusem, A.; Lara, F., Proximal point algorithms for quasiconvex pseudomonotone equilibrium problems, J Optim Theory Appl, 193, 1-3, 443-461 (2022) · Zbl 1492.90183 · doi:10.1007/s10957-021-01951-7
[30] Lara, F., On Nonconvex pseudomonotone equilibrium problems with applications, Set-Valued Var, Set-Valued Var. Anal., 30, 2, 355-372 (2022) · Zbl 1489.90137 · doi:10.1007/s11228-021-00586-0
[31] Gowda, M. S.; Sossa, D., Weakly homogeneous variational inequalities and solvability of nonlinear equations over cones, Math. Program, 177, 1-2, 149-171 (2019) · Zbl 1418.90261 · doi:10.1007/s10107-018-1263-7
[32] Bai, X.; Zheng, M.; Huang, Z.-H., Unique solvability of weakly homogeneous generalized variational inequalities, J Glob Optim, 80, 4, 921-943 (2021) · Zbl 1473.49007 · doi:10.1007/s10898-021-01040-z
[33] Ma, X.-X.; Zheng, M.-M.; Huang, Z.-H., A note on the nonemptiness and compactness of solution sets of weakly homogeneous variational inequalities, SIAM J. Optim, 30, 1, 132-148 (2020) · Zbl 1435.90135 · doi:10.1137/19M1237478
[34] Zheng, M.-M.; Huang, Z.-H.; Bai, X.-L., Nonemptiness and compactness of solution sets to weakly homogeneous generalized variational inequalities, J Optim Theory Appl, 189, 3, 919-937 (2021) · Zbl 1472.49024 · doi:10.1007/s10957-021-01866-3
[35] Auslender, A.; Teboulle, M., Asymptotic Cones and Functions in Optimization and Variational Inequalities (2003), New York: Springer, New York · Zbl 1017.49001
[36] Bauschke, H. H.; Combettes, P. L., Convex Analysis and Monotone Operator Theory in Hilbert Spaces (2019), Cham: Springer, Cham
[37] Huang, Z.-H., Generalization of an existence theorem for variational inequalities, J. Optim. Theory Appl, 118, 3, 567-585 (2003) · Zbl 1045.49006 · doi:10.1023/B:JOTA.0000004871.55273.15
[38] Saigal, R., Extension of the generalized complementarity problem, Math. OR, 1, 3, 260-266 (1976) · Zbl 0363.90091 · doi:10.1287/moor.1.3.260
[39] Fan, K., Some properties of convex sets related to fixed point theorems, Math. Ann, 266, 4, 519-537 (1984) · Zbl 0515.47029 · doi:10.1007/BF01458545
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.