×

Hybrid mimetic finite-difference and virtual element formulation for coupled poromechanics. (English) Zbl 1506.74390

Summary: We present a hybrid mimetic finite-difference and virtual element formulation for coupled single-phase poromechanics on unstructured meshes. The key advantage of the scheme is that it is convergent on complex meshes containing highly distorted cells with arbitrary shapes. We use a local pressure-jump stabilization method based on unstructured macro-elements to prevent the development of spurious pressure modes in incompressible problems approaching undrained conditions. A scalable linear solution strategy is obtained using a block-triangular preconditioner designed specifically for the saddle-point systems arising from the proposed discretization. The accuracy and efficiency of our approach are demonstrated numerically on two-dimensional benchmark problems.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)

References:

[1] Zoback, M. D., Reservoir Geomechanics (2010), Cambridge University Press · Zbl 1189.74005
[2] Rutqvist, J., The geomechanics of CO \({}_2\) storage in deep sedimentary formations, Geotech. Geol. Eng., 30, 3, 525-551 (2012)
[3] Majer, E. L.; Baria, R.; Stark, M.; Oates, S.; Bommer, J.; Smith, B.; Asanuma, H., Induced seismicity associated with enhanced geothermal systems, Geothermics, 36, 3, 185-222 (2007)
[4] Cowin, S. C., Bone poroelasticity, J. Biomech., 32, 3, 217-238 (1999)
[5] Badia, S.; Quaini, A.; Quarteroni, A., Coupling Biot and Navier-Stokes equations for modelling fluid-poroelastic media interaction, J. Comput. Phys., 228, 21, 7986-8014 (2009) · Zbl 1391.74234
[6] Mallison, B.; Sword, C.; Viard, T.; Milliken, W.; Cheng, A., Unstructured cut-cell grids for modeling complex reservoirs, SPE J., 19, 02, 340-352 (2014)
[7] Beirão da Veiga, L.; Lipnikov, K.; Manzini, G., The Mimetic Finite Difference Method for Elliptic Problems, Vol. 11 (2014), Springer · Zbl 1286.65141
[8] Beirão da Veiga, L.; Brezzi, F.; Marini, L. D.; Russo, A., Virtual element methods for general second order elliptic problems on polygonal meshes, Math. Models Methods Appl. Sci., 26, 04, 729-750 (2015) · Zbl 1332.65162
[9] Di Pietro, D. A.; Droniou, J., The Hybrid High-Order Method for Polytopal Meshes, Vol. 19 (2019), Springer
[10] Droniou, J.; Eymard, R.; Gallouët, T.; Guichard, C.; Herbin, R., The Gradient Discretisation Method, Vol. 82 (2018), Springer · Zbl 1435.65005
[11] Manzini, G.; Russo, A.; Sukumar, N., New perspectives on polygonal and polyhedral finite element methods, Math. Models Methods Appl. Sci., 24, 08, 1665-1699 (2014) · Zbl 1291.65322
[12] Botti, M.; Di Pietro, D. A.; Sochala, P., A hybrid high-order discretization method for nonlinear poroelasticity, Comput. Methods Appl. Math., 20, 2, 227-249 (2020) · Zbl 1437.76027
[13] Nordbotten, J. M., Stable cell-centered finite volume discretization for Biot equations, SIAM J. Numer. Anal., 54, 2, 942-968 (2016) · Zbl 1382.76187
[14] Terekhov, K. M., Cell-centered finite-volume method for heterogeneous anisotropic poromechanics problem, J. Comput. Appl. Math., 365, Article 112357 pp. (2020) · Zbl 1423.76308
[15] Beirão da Veiga, L.; Lovadina, C.; Mora, D., A virtual element method for elastic and inelastic problems on polytope meshes, Comput. Methods Appl. Mech. Engrg., 295, 327-346 (2015) · Zbl 1423.74120
[16] Cangiani, A.; Georgoulis, E. H.; Pryer, T.; Sutton, O. J., A posteriori error estimates for the virtual element method, Numer. Math., 137, 4, 857-893 (2017) · Zbl 1384.65079
[17] Berrone, S.; Borio, A., Orthogonal polynomials in badly shaped polygonal elements for the virtual element method, Finite Elem. Anal. Des., 129, 14-31 (2017)
[18] Brenner, S. C.; Guan, Q.; Sung, L.-Y., Some estimates for virtual element methods, Comput. Methods Appl. Math., 17, 4, 553-574 (2017) · Zbl 1434.65237
[19] Benedetto, M.; Berrone, S.; Borio, A.; Pieraccini, S.; Scialò, S., Order preserving SUPG stabilization for the virtual element formulation of advection-diffusion problems, Comput. Methods Appl. Mech. Engrg., 311, 18-40 (2016) · Zbl 1439.76051
[20] Berrone, S.; Borio, A., A residual a posteriori error estimate for the virtual element method, Math. Models Methods Appl. Sci., 27, 08, 1423-1458 (2017) · Zbl 1376.65136
[21] Andersen, O.; Nilsen, H. M.; Raynaud, X., Virtual element method for geomechanical simulations of reservoir models, Comput. Geosci., 21, 5-6, 877-893 (2017) · Zbl 1401.74208
[22] Coulet, J.; Faille, I.; Girault, V.; Guy, N.; Nataf, F., A fully coupled scheme using virtual element method and finite volume for poroelasticity, Comput. Geosci., 1-23 (2019)
[23] Benedetto, M.; Berrone, S.; Borio, A.; Pieraccini, S.; Scialò, S., A hybrid mortar virtual element method for discrete fracture network simulations, J. Comput. Phys., 306, 148-166 (2016) · Zbl 1351.76048
[24] Benedetto, M.; Berrone, S.; Scialò, S., A globally conforming method for solving flow in discrete fracture networks using the virtual element method, Finite Elem. Anal. Des., 109, 23-36 (2016)
[25] Lie, K.-A., An Introduction to Reservoir Simulation using MATLAB/GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox (MRST) (2019), Cambridge University Press · Zbl 1425.76001
[26] Edwards, M. G.; Rogers, C. F., Finite volume discretization with imposed flux continuity for the general tensor pressure equation, Comput. Geosci., 2, 4, 259-290 (1998) · Zbl 0945.76049
[27] Aavatsmark, I., An introduction to multipoint flux approximations for quadrilateral grids, Comput. Geosci., 6, 3-4, 405-432 (2002) · Zbl 1094.76550
[28] Aarnes, J. E.; Krogstad, S.; Lie, K.-A., Multiscale mixed/mimetic methods on corner-point grids, Comput. Geosci., 12, 3, 297-315 (2008) · Zbl 1259.76065
[29] Droniou, J.; Eymard, R.; Gallouët, T.; Herbin, R., A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods, Math. Models Methods Appl. Sci., 20, 02, 265-295 (2010) · Zbl 1191.65142
[30] Abushaikha, A. S.; Terekhov, K. M., A fully implicit mimetic finite difference scheme for general purpose subsurface reservoir simulation with full tensor permeability, J. Comput. Phys., 406, Article 109194 pp. (2020) · Zbl 1453.76120
[31] Eymard, R.; Guichard, C.; Herbin, R., Small-stencil 3D schemes for diffusive flows in porous media, ESAIM Math. Model. Numer. Anal., 46, 2, 265-290 (2012) · Zbl 1271.76324
[32] Klemetsdal, Ø. S.; Møyner, O.; Raynaud, X.; Lie, K.-A., A comparison of consistent discretizations for elliptic problems on polyhedral grids, (International Conference on Finite Volumes for Complex Applications (2020), Springer), 585-594 · Zbl 1454.65147
[33] Bonaldi, F.; Brenner, K.; Droniou, J.; Masson, R., Gradient discretization of two-phase flows coupled with mechanical deformation in fractured porous media (2020), arXiv:2004.09860
[34] Settari, A.; Mourits, F., A coupled reservoir and geomechanical simulation system, SPE J., 3, 03, 219-226 (1998)
[35] Babuška, I., Error-bounds for finite element method, Numer. Math., 16, 4, 322-333 (1971) · Zbl 0214.42001
[36] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers, RAIRO Anal. Numér., 8, R2, 129-151 (1974) · Zbl 0338.90047
[37] Beirão da Veiga, L.; Lipnikov, K., A mimetic discretization of the Stokes problem with selected edge bubbles, SIAM J. Sci. Comput., 32, 2, 875-893 (2010) · Zbl 1352.76021
[38] Camargo, J. T.; White, J. A.; Borja, R. I., A macroelement stabilization for mixed finite element/finite volume discretizations of multiphase poromechanics, Comput. Geosci., 1-18 (2020)
[39] M. Frigo, N. Castelletto, M. Ferronato, J.A. White, Efficient solvers for hybridized three-field mixed finite element coupled poromechanics, Comput. Math. Appl. http://dx.doi.org/10.1016/j.camwa.2020.07.010. · Zbl 1524.76451
[40] Mandel, J., Consolidation des sols (Etude mathématique), Géotechnique, 3, 7, 287-299 (1953)
[41] Talischi, C.; Pereira, A.; Paulino, G. H.; Menezes, I. F.M.; Carvalho, M. S., Polygonal finite elements for incompressible fluid flow, Internat. J. Numer. Methods Fluids, 74, 2, 134-151 (2014) · Zbl 1455.76095
[42] Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12, 2, 155-164 (1941) · JFM 67.0837.01
[43] Coussy, O., Poromechanics (2004), John Wiley & Sons
[44] Frijns, A. J.H., A Four-Component Mixture Theory Applied to Cartilaginous Tissues: Numerical Modelling and Experiments (2000), Technische Universiteit Eindhoven: Technische Universiteit Eindhoven The Netherlands, (Ph.D. thesis) · Zbl 0966.92002
[45] Lipnikov, K., Numerical Methods for the Biot Model in Poroelasticity (2002), University of Houston, (Ph.D. thesis)
[46] Phillips, P. J.; Wheeler, M. F., A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case, Comput. Geosci., 11, 2, 131-144 (2007) · Zbl 1117.74015
[47] Phillips, P. J.; Wheeler, M. F., A coupling of mixed and continuous Galerkin finite element methods for poroelasticity II: the discrete-in-time case, Comput. Geosci., 11, 2, 145-158 (2007) · Zbl 1117.74016
[48] Jha, B.; Juanes, R., A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics, Acta Geotech., 2, 3, 139-153 (2007)
[49] Ferronato, M.; Castelletto, N.; Gambolati, G., A fully coupled 3-d mixed finite element model of Biot consolidation, J. Comput. Phys., 229, 12, 4813-4830 (2010) · Zbl 1305.76055
[50] Haga, J. B.; Osnes, H.; Langtangen, H. P., On the causes of pressure oscillations in low-permeable and low-compressible porous media, Int. J. Numer. Anal. Methods Geomech., 36, 12, 1507-1522 (2012)
[51] Both, J. W.; Borregales, M.; Nordbotten, J. M.; Kumar, K.; Radu, F. A., Robust fixed stress splitting for Biot’s equations in heterogeneous media, Appl. Math. Lett., 68, 101-108 (2017) · Zbl 1383.74025
[52] Bause, M.; Radu, F. A.; Köcher, U., Space-time finite element approximation of the Biot poroelasticity system with iterative coupling, Comput. Methods Appl. Mech. Engrg., 320, 745-768 (2017) · Zbl 1439.74389
[53] Hu, X.; Rodrigo, C.; Gaspar, F. J.; Zikatanov, L. T., A nonconforming finite element method for the Biot’s consolidation model in poroelasticity, J. Comput. Appl. Math., 310, 143-154 (2017) · Zbl 1381.76175
[54] Rodrigo, C.; Hu, X.; Ohm, P.; Adler, J. H.; Gaspar, F. J.; Zikatanov, L. T., New stabilized discretizations for poroelasticity and the Stokes’ equations, Comput. Methods Appl. Mech. Engrg., 341, 467-484 (2018) · Zbl 1440.76027
[55] Both, J. W.; Kumar, K.; Nordbotten, J. M.; Radu, F. A., Anderson accelerated fixed-stress splitting schemes for consolidation of unsaturated porous media (2018)
[56] Hong, Q.; Kraus, J., Parameter-robust stability of classical three-field formulation of Biot’s consolidation model, Electron. Trans. Numer. Anal., 48, 202-226 (2018) · Zbl 1398.65046
[57] Hong, Q.; Kraus, J.; Lymbery, M.; Wheeler, M. F., Parameter-robust convergence analysis of fixed-stress split iterative method for multiple-permeability poroelasticity systems, Multiscale Model. Simul., 18, 2, 916-941 (2020) · Zbl 1447.65077
[58] Eymard, R.; Gallouët, T.; Herbin, R., Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal., 30, 4, 1009-1043 (2010) · Zbl 1202.65144
[59] Geuzaine, C.; Remacle, J.-F., Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Internat. J. Numer. Methods Engrg., 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[60] Talischi, C.; Paulino, G. H.; Pereira, A.; Menezes, I. F.M., PolyMesher: A general-purpose mesh generator for polygonal elements written in Matlab, Struct. Multidiscip. Optim., 45, 3, 309-328 (2012) · Zbl 1274.74401
[61] Brezzi, F.; Lipnikov, K.; Shashkov, M., Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal., 43, 5, 1872-1896 (2005) · Zbl 1108.65102
[62] Brezzi, F.; Lipnikov, K.; Simoncini, V., A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci., 15, 10, 1533-1551 (2005) · Zbl 1083.65099
[63] Beaude, L.; Masson, R.; Lopez, S.; Samier, P., Combined face based and nodal based discretizations on hybrid meshes for non-isothermal two-phase Darcy flow problems, ESAIM Math. Model. Numer. Anal., 53, 4, 1125-1156 (2019) · Zbl 1435.65192
[64] Dassi, F.; Fumagalli, A.; Losapio, D.; Scialò, S.; Scotti, A.; Vacca, G., The mixed virtual element method for grids with curved interfaces (2020), arXiv:2011.09332
[65] Dassi, F.; Vacca, G., Bricks for the mixed high-order virtual element method: Projectors and differential operators, Appl. Numer. Math., 155, 140-159 (2020) · Zbl 1437.65184
[66] Beirão da Veiga, L.; Gyrya, V.; Lipnikov, K.; Manzini, G., Mimetic finite difference method for the stokes problem on polygonal meshes, J. Comput. Phys., 228, 19, 7215-7232 (2009), URL https://www.sciencedirect.com/science/article/pii/S002199910900343X · Zbl 1172.76032
[67] Beirão da Veiga, L.; Gyrya, V.; Lipnikov, K.; Manzini, G., Mimetic finite difference method for the Stokes problem on polygonal meshes, J. Comput. Phys., 228, 19, 7215-7232 (2009) · Zbl 1172.76032
[68] Kechkar, N.; Silvester, D. J., Analysis of locally stabilized mixed finite element methods for the Stokes problem, Math. Comp., 58, 197, 1-10 (1992) · Zbl 0738.76040
[69] Silvester, D. J., Optimal low order finite element methods for incompressible flow, Comput. Methods Appl. Mech. Engrg., 111, 3-4, 357-368 (1994) · Zbl 0844.76059
[70] Elman, H. C.; Silvester, D. J.; Wathen, A. J., Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics (2014), Oxford University Press: Oxford University Press USA · Zbl 1304.76002
[71] Boffi, D.; Brezzi, F.; Fortin, M., Mixed Finite Element Methods and Applications (2013), Springer · Zbl 1277.65092
[72] Saad, Y.; Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 3, 856-869 (1986) · Zbl 0599.65018
[73] Kim, J.; Tchelepi, H. A.; Juanes, R., Stability and convergence of sequential methods for coupled flow and geomechanics: Fixed-stress and fixed-strain splits, Comput. Methods Appl. Mech. Engrg., 200, 13, 1591-1606 (2011) · Zbl 1228.74101
[74] White, J. A.; Castelletto, N.; Tchelepi, H. A., Block-partitioned solvers for coupled poromechanics: A unified framework, Comput. Methods Appl. Mech. Engrg., 303, 55-74 (2016) · Zbl 1425.74497
[75] Castelletto, N.; White, J. A.; Ferronato, M., Scalable algorithms for three-field mixed finite element coupled poromechanics, J. Comput. Phys., 327, 894-918 (2016) · Zbl 1373.76312
[76] Baker, A. H.; Falgout, R. D.; Kolev, Tz. V.; Yang, U. M., Multigrid smoothers for ultraparallel computing, SIAM J. Sci. Comput., 33, 5, 2864-2887 (2011) · Zbl 1237.65032
[77] Vassilevski, P. S.; Yang, U. M., Reducing communication in algebraic multigrid using additive variants, Numer. Linear Algebra Appl., 21, 2, 275-296 (2014) · Zbl 1340.65304
[78] Ries, M.; Trottenberg, U.; Winter, G., A note on MGR methods, Linear Algebra Appl., 49, 1-26 (1983) · Zbl 0515.65070
[79] Bui, Q. M.; Osei-Kuffuor, D.; Castelletto, N.; White, J. A., A scalable multigrid reduction framework for multiphase poromechanics of heterogeneous media, SIAM J. Sci. Comput., 42, 2, B379-B396 (2020) · Zbl 1435.65153
[80] Bui, Q. M.; Hamon, F.; Castelletto, N.; Osei-Kuffuor, D.; Settgast, R.; White, J., Multigrid reduction preconditioning framework for coupled processes in porous and fractured media (2021), arXiv:2101.11649
[81] Boffi, D.; Botti, M.; Di Pietro, D. A., A nonconforming high-order method for the Biot problem on general meshes, SIAM J. Sci. Comput., 38, 3, A1508-A1537 (2016) · Zbl 1337.76042
[82] Axelsson, O.; Gustafsson, I., Iterative methods for the solution of the Navier equations of elasticity, Comput. Methods Appl. Mech. Engrg., 15, 2, 241-258 (1978) · Zbl 0402.73028
[83] Blaheta, R., Displacement decomposition-incomplete factorization preconditioning techniques for linear elasticity problems, Numer. Linear Algebra Appl., 1, 2, 107-128 (1994) · Zbl 0837.65021
[84] Ruge, J. W.; Stüben, K., Algebraic multigrid, (Multigrid Methods (1987), SIAM), 73-130
[85] Boyle, J. W.; Mihajlović, M. D.; Scott, J. A., HSL_MI20: An efficient AMG preconditioner for finite element problems in 3D, Internat. J. Numer. Methods Engrg., 82, 64-98 (2010) · Zbl 1183.76799
[86] Castelletto, N.; White, J. A.; Tchelepi, H. A., Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics, Int. J. Numer. Anal. Methods Geomech., 39, 14, 1593-1618 (2015)
[87] Yi, S.-Y., Convergence analysis of a new mixed finite element method for Biot’s consolidation model, Numer. Methods Partial Differential Equations, 30, 4, 1189-1210 (2014) · Zbl 1350.74024
[88] Phillips, P. J.; Wheeler, M. F., Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach, Comput. Geosci., 13, 1, 5-12 (2009) · Zbl 1172.74017
[89] Brezzi, F.; Lipnikov, K.; Shashkov, M., Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces, Math. Models Methods Appl. Sci., 16, 02, 275-297 (2006) · Zbl 1094.65111
[90] Beirão da Veiga, L.; Russo, A.; Vacca, G., The virtual element method with curved edges, ESAIM Math. Model. Numer. Anal., 53, 2, 375-404 (2019) · Zbl 1426.65163
[91] Dassi, F.; Scacchi, S., Parallel block preconditioners for three-dimensional virtual element discretizations of saddle-point problems, Comput. Methods Appl. Mech. Engrg., 372, Article 113424 pp. (2020) · Zbl 1506.65204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.