×

Irreducible representations of Leavitt algebras. (English) Zbl 1510.16025

Let \(E\) be a weighted graph, \(K\) be a field, and \(L_K(E)\) be the Leavitt path algebra of \(E\) over \(K.\) The authors construct a representation graph \(F\) and a \(L_K(E)\)-module \(V_F\) associated to \(F\) and characterize representation graphs \(F\) such that \(V_F\) is simple. They show that the category of representation graphs of \(E\) is a disjoint union of subcategories each of which contains a unique universal object \(T\) such that \(V_T\) is indecomposable and a unique irreducible representation graph \(S\) such that \(V_S\) is simple.
This approach generalizes Chen’s construction of simple modules in the case when any edge of \(E\) has weight one and systematically produces examples of non-simple indecomposable modules.

MSC:

16S88 Leavitt path algebras

References:

[1] Abrams, G.; Aranda Pino, G., The Leavitt path algebra of a graph, J. Algebra, 293, 319-334 (2005) · Zbl 1119.16011
[2] Abrams, G.; Ara, P.; Siles Molina, M., Leavitt Path Algebras, Lecture Notes in Mathematics, vol. 2191 (2017), Springer Verlag · Zbl 1393.16001
[3] Abrams, G.; Mantese, F.; Tonolo, A., Extensions of simple modules over Leavitt path algebras, J. Algebra, 431, 78-106 (2015) · Zbl 1319.16005
[4] Ánh, P. N.; Nam, T. G., Special irreducible representations of Leavitt path algebras, Adv. Math., 377 (2021) · Zbl 1479.16029
[5] Ara, P.; Brustenga, M., The regular algebra of a quiver, J. Algebra, 309, 207-235 (2007) · Zbl 1119.16012
[6] Ara, P.; Brustenga, M., Module theory over Leavitt path algebras and K-theory, J. Pure Appl. Algebra, 214, 1131-1151 (2010) · Zbl 1189.16013
[7] Ara, P.; Hazrat, R.; Li, H.; Sims, A., Graded Steinberg algebras and their representations, Algebra Number Theory, 12, 1, 131-172 (2018) · Zbl 1387.22005
[8] Ara, P.; Moreno, M. A.; Pardo, E., Nonstable K-theory for graph algebras, Algebr. Represent. Theory, 10, 157-168 (2007) · Zbl 1123.16006
[9] Ara, P.; Rangaswamy, K. M., Finitely presented simple modules over Leavitt path algebras, J. Algebra, 417, 333-352 (2015) · Zbl 1304.16002
[10] Chen, X. W., Irreducible representations of Leavitt path algebras, Forum Math., 27, 549-574 (2015) · Zbl 1332.16006
[11] Cohn, P. M., Some remarks on the invariant basis property, Topology, 5, 215-228 (1966) · Zbl 0147.28802
[12] Erdmann, K.; Holm, T., Algebras and Representation Theory, Springer Undergraduate Mathematics Series (2018), Springer · Zbl 1429.16001
[13] Gonçalves, D.; Royer, D., Unitary equivalence of representations of graph algebras and branching systems, Funct. Anal. Appl., 45, 117-127 (2011) · Zbl 1271.46043
[14] Gonçalves, D.; Royer, D., Graph \(C^\ast \)-algebras, branching systems and the Perron-Frobenius operator, J. Math. Anal. Appl., 391, 457-465 (2012) · Zbl 1250.46036
[15] Gonçalves, D.; Royer, D., On the representations of Leavitt path algebras, J. Algebra, 333, 258-272 (2011) · Zbl 1235.16014
[16] Gonçalves, D.; Royer, D., Branching systems and representations of Cohn-Leavitt path algebras of separated graphs, J. Algebra, 422, 413-426 (2015) · Zbl 1307.16016
[17] Green, E. L., Graphs with relations, coverings and group-graded algebras, Trans. Am. Math. Soc., 279, 297-310 (1983) · Zbl 0536.16001
[18] Hazrat, R., The graded structure of Leavitt path algebras, Isr. J. Math., 195, 833-895 (2013) · Zbl 1308.16005
[19] Hazrat, R.; Preusser, R., Applications of normal forms for weighted Leavitt path algebras: simple rings and domains, Algebr. Represent. Theory, 20, 1061-1083 (2017) · Zbl 1376.16026
[20] Higman, G., The units of group-rings, Proc. Lond. Math. Soc., 46, 231-248 (1940) · JFM 66.0104.04
[21] Kumjian, A.; Pask, D., \( C^\ast \)-algebras of directed graphs and group actions, Ergod. Theory Dyn. Syst., 19, 1503-1519 (1999) · Zbl 0949.46034
[22] Leavitt, W. G., Modules over rings of words, Proc. Am. Math. Soc., 7, 188-193 (1956) · Zbl 0073.02401
[23] Leavitt, W. G., Modules without invariant basis number, Proc. Am. Math. Soc., 8, 322-328 (1957) · Zbl 0073.02402
[24] Leavitt, W. G., The module type of a ring, Trans. Am. Math. Soc., 103, 113-130 (1962) · Zbl 0112.02701
[25] Mohan, R.; Suhas, B. N., Cohn-Leavitt path algebras of bi-separated graphs · Zbl 1481.16034
[26] Nguyen, Q. L.; Nguyen, B. V., On induced graded simple modules over graded Steinberg algebras with applications to Leavitt path algebras · Zbl 07815035
[27] Preusser, R., The V-monoid of a weighted Leavitt path algebra, Isr. J. Math., 234, 125-147 (2019) · Zbl 1478.16017
[28] Preusser, R., The Gelfand-Kirillov dimension of a weighted Leavitt path algebra, J. Algebra Appl., 19, Article 2050059 pp. (2020) · Zbl 1444.16041
[29] Preusser, R., Leavitt path algebras of hypergraphs, Bull. Braz. Math. Soc. (N.S.), 51, 185-221 (2020) · Zbl 1445.16029
[30] Preusser, R., Weighted Leavitt path algebras that are isomorphic to unweighted Leavitt path algebras, Algebr. Represent. Theory, 24, 403-423 (2021) · Zbl 1497.16024
[31] Rangaswamy, K. M., On simple modules over Leavitt path algebras, J. Algebra, 423, 239-258 (2015) · Zbl 1311.16005
[32] Rangaswamy, K. M., Leavitt path algebras with finitely presented irreducible representations, J. Algebra, 447, 624-648 (2016) · Zbl 1333.16010
[33] Paul Smith, S., Category equivalences involving graded modules over path algebras of quivers, Adv. Math., 230, 1780-1810 (2012) · Zbl 1264.16042
[34] Steinberg, B., A groupoid approach to discrete inverse semigroup algebras, Adv. Math., 223, 689-727 (2010) · Zbl 1188.22003
[35] Stallings, J., Topology of finite graphs, Invent. Math., 71, 555-565 (1983) · Zbl 0521.20013
[36] Webb, P., A Course in Finite Group Representation Theory, Cambridge Studies in Advanced Mathematics (2016), Cambridge University Press · Zbl 1371.20002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.