×

On induced graded simple modules over graded Steinberg algebras with applications to Leavitt path algebras. (English) Zbl 07815035

For an ample groupoid \(\mathcal{G}\), its Steinberg algebra is defined by B. Steinberg [Adv. Math. 223, No. 2, 689–727 (2010; Zbl 1188.22003)] and L. O. Clark et al. [Semigroup Forum 89, No. 3, 501–517 (2014; Zbl 1323.46033)]. These algebras include the well-known Leavitt path algebras and Kumjian-Pask algebras.
The paper under review studies the induction functor and restriction functor associated to Steinberg algebras in the graded setting. The spectral graded simple modules over graded Steinberg algebras are studied. Moreover, spectral simple modules and spectral graded simple modules over the Leavitt path algebras are classified; see Theorems 4.1 and 4.2.

MSC:

16S99 Associative rings and algebras arising under various constructions
16S88 Leavitt path algebras
16W50 Graded rings and modules (associative rings and algebras)
16D60 Simple and semisimple modules, primitive rings and ideals in associative algebras
Full Text: DOI

References:

[1] Abrams, G. and Aranda Pino, G., The Leavitt path algebra of a graph, J. Algebra293 (2005) 319-334. · Zbl 1119.16011
[2] Abrams, G., Ara, P. and Siles Molina, M., Leavitt Path Algebras, , Vol. 2191 (Springer-Verlag, London, 2017). · Zbl 1393.16001
[3] Ara, P., Hazrat, R., Li, H. and Sims, A., Graded Steinberg algebras and their representations, Algebra Number Theory12 (2018) 131-172. · Zbl 1387.22005
[4] Ara, P., Moreno, M. A. and Pardo, E., Nonstable \(K\)-theory for graph algebras, Algebra Represent. Theory10 (2007) 157-178. · Zbl 1123.16006
[5] Ara, P. and Rangaswamy, K. M., Finitely presented simple modules over Leavitt path algebras, J. Algebra417 (2014) 333-352. · Zbl 1304.16002
[6] Aranda Pino, G., Clark, J., Huef, A. and Raeburn, I., Kumjian-Pask algebras of higher-rank graphs, Trans. Amer. Math. Soc.365 (2013) 3613-3641. · Zbl 1282.16006
[7] Aranda Pino, G., Martín Barquero, D., Martín González, C. and Siles Molina, M., Socle theory for Leavitt path algebras of arbitrary graphs, Rev. Mat. Iberoam.26 (2010) 611-638. · Zbl 1203.16013
[8] Chen, X. W., Irreducible representations of Leavitt path algebras, Forum Math.27 (2015) 549-574. · Zbl 1332.16006
[9] Clark, L. O., Exel, R. and Pardo, E., A generalised uniqueness theorem and the graded ideal structure of Steinberg algebras, Forum Math.30 (2018) 533-552. · Zbl 1410.16032
[10] Clark, L. O., Farthing, C., Sims, A. and Tomforde, M., A groupoid generalisation of Leavitt path algebras, Semigroup Forum89 (2014) 501-517. · Zbl 1323.46033
[11] Clark, L. O., Hazrat, R. and Rigby, S. W., Strongly graded groupoids and strongly graded Steinberg algebras, J. Algebra530 (2019) 34-68. · Zbl 1444.16042
[12] Clark, L. O., Martín Barquero, D., Martín González, C. and Siles Molina, M., Using Steinberg algebras to study decomposability of Leavitt path algebras, Forum Math.29 (2016) 1311-1324. · Zbl 1401.16036
[13] Clark, L. O., Martín Barquero, D., Martín González, C. and Siles Molina, M., Using the Steinberg algebra model to determine the center of any Leavitt path algebra, Israel J. Math.230 (2019) 23-44. · Zbl 1469.16063
[14] Clark, L. O. and Pangalela, Y. E. P., Kumjian-Pask algebras of finitely aligned higher rank graphs, J. Algebra482 (2017) 364-397. · Zbl 1373.16054
[15] Clark, L. O. and Sims, A., Equivalent groupoids have Morita equivalent Steinberg algebras, J. Pure Appl. Algebra219 (2015) 2062-2075. · Zbl 1317.16001
[16] Gonçalves, D. and Royer, D., On the representations of Leavitt path algebras, J. Algebra333 (2011) 258-272. · Zbl 1235.16014
[17] Hazrat, R. and Li, H., Graded Steinberg algebras and partial actions, J. Pure Appl. Algebra222 (2018) 3946-3967. · Zbl 1393.22003
[18] Hazrat, R. and Rangaswamy, K. M., On graded irreducible representations of Leavitt path algebras, J. Algebra450 (2016) 458-486. · Zbl 1350.16006
[19] Karpilovsky, G., Group Representations, Vol. 3, , Vol. 180 (Elsevier Science, 1994). · Zbl 0804.20001
[20] Koç, A. and Özaydin, M., Finite-dimensional representations of Leavitt path algebras, Forum Math.30 (2018) 915-928. · Zbl 1407.16013
[21] Rangaswamy, K. M., On simple modules over Leavitt path algebras, J. Algebra423 (2015) 239-258. · Zbl 1311.16005
[22] Renault, J., A Groupoid Approach to \(C^\ast \)-Algebras, , Vol. 793 (Springer-Verlag, Berlin, 1980). · Zbl 0433.46049
[23] Rigby, S. W., A groupoid approach to Leavitt path algebras, in: Leavitt Path Algebras and Classical \(K\)-Theory, (Springer, Singapore2020), pp. 21-72. · Zbl 1461.16033
[24] Steinberg, B., A groupoid approach to discrete inverse semigroup algebras, Adv. Math.223 (2010) 689-727. · Zbl 1188.22003
[25] Steinberg, B., Simplicity, primitivity and semiprimitivity of étale groupoid algebras with applications to inverse semigroup algebras, J. Pure Appl. Algebra220 (2016) 1035-1054. · Zbl 1383.20038
[26] Steinberg, B., Chain conditions on étale groupoid algebras with applications to Leavitt path algebras and inverse semigroup algebras, J. Aust. Math. Soc.104 (2018) 403-411. · Zbl 1422.16017
[27] Steinberg, B., Prime étale groupoid algebras with applications to inverse semigroup and Leavitt path algebras, J. Pure Appl. Algebra223 (2019) 2474-2488. · Zbl 1471.20044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.