×

Integrality structures in topological strings and quantum 2-functions. (English) Zbl 1522.81569

Summary: In this article, we first prove the integrality of an explicit disc counting formula obtained by M. Panfil and P. Sułkowski [J. High Energy Phys. 2019, No. 1, Paper No. 124, 45 p. (2019; Zbl 1409.83193)] for a class of toric Calabi-Yau manifolds named generalized conifolds. Then, motivated by the integrality structures in open topological string theory, we introduce a mathematical notion of “quantum 2-function” which can be viewed as the quantization of the notion of “2-function” introduced by A. Schwarz et al. [Proc. Symp. Pure Math. 90, 113–128 (2015; Zbl 1356.81196)]. Finally, we provide a basic example of quantum 2-function and discuss the quantization of 2-functions.

MSC:

81T45 Topological field theories in quantum mechanics
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
57K16 Finite-type and quantum invariants, topological quantum field theories (TQFT)

References:

[1] Aganagic, M.; Beem, C., The Geometry of D-brane Superpotentials, JHEP, 12, 060 (2011) · Zbl 1306.81176 · doi:10.1007/JHEP12(2011)060
[2] Aspinwall, PS; Morrison, DR, Topological field theory and rational curves, Commun. Math. Phys., 151, 245 (1993) · Zbl 0776.53043 · doi:10.1007/BF02096768
[3] M. Aganagic and C. Vafa, Mirror symmetry, D-branes and counting holomorphic discs, hep-th/0012041 [INSPIRE]. · Zbl 1094.32006
[4] M. Aganagic and C. Vafa, Large N Duality, Mirror Symmetry, and a Q-deformed A-polynomial for Knots, arXiv:1204.4709 [INSPIRE].
[5] Aganagic, M.; Klemm, A.; Vafa, C., Disk instantons, mirror symmetry and the duality web, Z. Naturforsch. A, 57, 1 (2002) · Zbl 1203.81153 · doi:10.1515/zna-2002-9-1001
[6] Bouchard, V.; Klemm, A.; Mariño, M.; Pasquetti, S., Remodeling the B-model, Commun. Math. Phys., 287, 117 (2009) · Zbl 1178.81214 · doi:10.1007/s00220-008-0620-4
[7] Bouchard, V.; Sulkowski, P., Topological recursion and mirror curves, Adv. Theor. Math. Phys., 16, 1443 (2012) · Zbl 1276.14054 · doi:10.4310/ATMP.2012.v16.n5.a3
[8] Q. Chen, K. Liu, P. Peng and S. Zhu, Congruent skein relations for colored HOMFLY-PT invariants and colored Jones polynomials, arXiv:1402.3571 [INSPIRE].
[9] Candelas, P.; De La Ossa, XC; Green, PS; Parkes, L., A Pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B, 359, 21 (1991) · Zbl 1098.32506 · doi:10.1016/0550-3213(91)90292-6
[10] Chen, Q.; Zhu, S., Full Colored HOMFLYPT Invariants, Composite Invariants and Congruent Skein Relation, Lett. Math. Phys., 110, 3307 (2020) · Zbl 1464.57014 · doi:10.1007/s11005-020-01327-4
[11] Eynard, B.; Orantin, N., Invariants of algebraic curves and topological expansion, Commun. Num. Theor. Phys., 1, 347 (2007) · Zbl 1161.14026 · doi:10.4310/CNTP.2007.v1.n2.a4
[12] Eynard, B.; Orantin, N., Computation of Open Gromov-Witten Invariants for Toric Calabi-Yau 3-Folds by Topological Recursion, a Proof of the BKMP Conjecture, Commun. Math. Phys., 337, 483 (2015) · Zbl 1365.14072 · doi:10.1007/s00220-015-2361-5
[13] Ekholm, T.; Kucharski, P.; Longhi, P., Physics and geometry of knots-quivers correspondence, Commun. Math. Phys., 379, 361 (2020) · Zbl 1455.57016 · doi:10.1007/s00220-020-03840-y
[14] Fang, B.; Liu, C-CM, Open Gromov-Witten invariants of toric Calabi-Yau 3-folds, Commun. Math. Phys., 323, 285 (2013) · Zbl 1284.14074 · doi:10.1007/s00220-013-1771-5
[15] Fang, B.; Liu, C-CM; Zong, Z., On the Remodeling Conjecture for Toric Calabi-Yau 3-Orbifolds, J. Am. Math. Soc., 33, 135 (2020) · Zbl 1444.14093 · doi:10.1090/jams/934
[16] A. Givental, A mirror theorem for toric complete intersections, alg-geom/9701016. · Zbl 0936.14031
[17] R. Gopakumar and C. Vafa, M theory and topological strings. 1, hep-th/9809187 [INSPIRE]. · Zbl 0922.32015
[18] S. Guo and J. Zhou, Gopakumar-Vafa BPS invariants, Hilbert schemes and quasimodular forms. I, Adv. Math.268 (2015) 1 [arXiv:1208.3270]. · Zbl 1343.14045
[19] K. Hori and C. Vafa, Mirror symmetry, hep-th/0002222 [INSPIRE]. · Zbl 1044.14018
[20] N. Koblitz, Graduate Texts in Mathematics. Vol. 58: p-adic Numbers, p-adic Analysis and Zeta-functions, second edition, Springer, New York, U.S.A. (1984).
[21] S. H. Katz and C.-C. M. Liu, Enumerative geometry of stable maps with Lagrangian boundary conditions and multiple covers of the disc, Adv. Theor. Math. Phys.5 (2001) 1 [math/0103074] [INSPIRE]. · Zbl 1026.32028
[22] Y. Konishi, Integrality of Gopakumar-Vafa invariants of toric Calabi-Yau threefolds, Publ. RIMS Kyoto Univ.42 (2006) 605 [math/0504188]. · Zbl 1133.14314
[23] Kucharski, P.; Reineke, M.; Stosic, M.; Sułkowski, P., BPS states, knots and quivers, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.121902
[24] Kucharski, P.; Reineke, M.; Stosic, M.; Sułkowski, P., Knots-quivers correspondence, Adv. Theor. Math. Phys., 23, 1849 (2019) · Zbl 1521.57006 · doi:10.4310/ATMP.2019.v23.n7.a4
[25] Kucharski, P.; Sułkowski, P., BPS counting for knots and combinatorics on words, JHEP, 11, 120 (2016) · Zbl 1390.81448 · doi:10.1007/JHEP11(2016)120
[26] Kontsevich, M.; Schwarz, AS; Vologodsky, V., Integrality of instanton numbers and p-adic B-model, Phys. Lett. B, 637, 97 (2006) · Zbl 1247.14058 · doi:10.1016/j.physletb.2006.04.012
[27] Labastida, JMF; Mariño, M., Polynomial invariants for torus knots and topological strings, Commun. Math. Phys., 217, 423 (2001) · Zbl 1018.81049 · doi:10.1007/s002200100374
[28] J. M. F. Labastida and M. Mariño, A new point of view in the theory of knot and link invariants, J. Knot Theory Ramif.11 (2002) 173 [math/0104180]. · Zbl 1002.57026
[29] Labastida, JMF; Mariño, M.; Vafa, C., Knots, links and branes at large N, JHEP, 11, 007 (2000) · Zbl 0990.81545 · doi:10.1088/1126-6708/2000/11/007
[30] Liu, K.; Peng, P., Proof of the Labastida-Mariño-Ooguri-Vafa conjecture, J. Diff. Geom., 85, 479 (2010) · Zbl 1217.81129
[31] C.-C. Liu, K. Liu and J. Zhou, A proof of a conjecture of Mariño-Vafa on Hodge integrals, J. Diff. Geom.65 (2003) 289. · Zbl 1077.14084
[32] Li, J.; Liu, C-C; Liu, K.; Zhou, J., A mathematical theory of the topological vertex, Geom. Topol., 13, 527 (2009) · Zbl 1184.14084 · doi:10.2140/gt.2009.13.527
[33] W. Luo and S. Zhu, Integrality structures in topological strings I: framed unknot, arXiv:1611.06506 [INSPIRE].
[34] Luo, W.; Zhu, S., Integrality of the LMOV invariants for framed unknot, Commun. Num. Theor. Phys., 13, 81 (2019) · Zbl 1414.81185 · doi:10.4310/CNTP.2019.v13.n1.a3
[35] Mariño, M.; Vafa, C., Framed knots at large N, Contemp. Math., 310, 185 (2002) · Zbl 1042.81071 · doi:10.1090/conm/310/05404
[36] Ooguri, H.; Vafa, C., Knot invariants and topological strings, Nucl. Phys. B, 577, 419 (2000) · Zbl 1036.81515 · doi:10.1016/S0550-3213(00)00118-8
[37] P. Peng, A Simple Proof of Gopakumar-Vafa Conjecture for Local Toric Calabi-Yau Manifolds, Commun. Math. Phys.276 (2007) 551 [math/0410540]. · Zbl 1137.14029
[38] Panfil, M.; Sułkowski, P., Topological strings, strips and quivers, JHEP, 01, 124 (2019) · Zbl 1409.83193 · doi:10.1007/JHEP01(2019)124
[39] Panfil, M.; Stošić, M.; Sułkowski, P., Donaldson-Thomas invariants, torus knots, and lattice paths, Phys. Rev. D, 98 (2018) · doi:10.1103/PhysRevD.98.026022
[40] S. Li, B. H. Lian and S.-T. Yau, Picard-Fuchs Equations for Relative Periods and Abel-Jacobi Map for Calabi-Yau Hypersurfaces, arXiv:0910.4215 [INSPIRE]. · Zbl 1253.14036
[41] Schwarz, AS; Vologodsky, V., Frobenius transformation, mirror map and instanton numbers, Phys. Lett. B, 660, 422 (2008) · Zbl 1246.14053 · doi:10.1016/j.physletb.2008.01.006
[42] Schwarz, A.; Vologodsky, V., Integrality theorems in the theory of topological strings, Nucl. Phys. B, 821, 506 (2009) · Zbl 1203.81155 · doi:10.1016/j.nuclphysb.2009.05.014
[43] Schwarz, A.; Vologodsky, V.; Walcher, J., Framing the Di-Logarithm (over ℤ), Proc. Symp. Pure Math., 90, 113 (2015) · Zbl 1356.81196 · doi:10.1090/pspum/090/01532
[44] A. Schwarz, V. Vologodsky and J. Walcher, Integrality of Framing and Geometric Origin of 2-functions, arXiv:1702.07135 [INSPIRE]. · Zbl 1356.81196
[45] Treumann, D.; Zaslow, E., Cubic Planar Graphs and Legendrian Surface Theory, Adv. Theor. Math. Phys., 22, 1289 (2018) · Zbl 07430949 · doi:10.4310/ATMP.2018.v22.n5.a5
[46] Walcher, J., Opening mirror symmetry on the quintic, Commun. Math. Phys., 276, 671 (2007) · Zbl 1135.14030 · doi:10.1007/s00220-007-0354-8
[47] Walcher, J., Calculations for Mirror Symmetry with D-branes, JHEP, 09, 129 (2009) · doi:10.1088/1126-6708/2009/09/129
[48] Walcher, J., On the Arithmetic of D-brane Superpotentials: Lines and Conics on the Mirror Quintic, Commun. Num. Theor. Phys., 6, 279 (2012) · Zbl 1270.81193 · doi:10.4310/CNTP.2012.v6.n2.a2
[49] E. Zaslow, Wavefunctions for a Class of Branes in Three-space, arXiv:1803.02462 [INSPIRE].
[50] J. Zhou, A proof of the full Mariño-Vafa conjecture, Math. Res. Lett.17 (2010) 1091 [arXiv:1001.2092]. · Zbl 1234.14040
[51] Zhu, S., Colored HOMFLY polynomials via skein theory, JHEP, 10, 229 (2013) · doi:10.1007/JHEP10(2013)229
[52] S. Zhu, Topological Strings and Their Applications in Mathematics, in Notices ICCM5 (2017) 83. · Zbl 1380.81279
[53] Zhu, S., Topological strings, quiver varieties, and Rogers-Ramanujan identities, Ramanujan J., 48, 399 (2019) · Zbl 1440.14261 · doi:10.1007/s11139-017-9976-4
[54] Zhu, S., On explicit formulae of LMOV invariants, JHEP, 10, 076 (2019) · Zbl 1427.83116 · doi:10.1007/JHEP10(2019)076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.