×

Topological recursion and mirror curves. (English) Zbl 1276.14054

Summary: We study the constant contributions to the free energies obtained through the topological recursion applied to the complex curves mirror to toric Calabi-Yau threefolds. We show that the recursion reproduces precisely the corresponding Gromov-Witten invariants, which can be encoded in powers of the MacMahon function. As a result, we extend the scope of the “remodeling conjecture” to the full free energies, including the constant contributions. In the process, we study how the pair of pants decomposition of the mirror curves plays an important role in the topological recursion. We also show that the free energies are not, strictly speaking, symplectic invariants, and that the recursive construction of the free energies does not commute with certain limits of mirror curves.

MSC:

14J32 Calabi-Yau manifolds (algebro-geometric aspects)
14N35 Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects)
14J33 Mirror symmetry (algebro-geometric aspects)
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory