×

On Hashin’s hollow cylinder and sphere assemblages in anisotropic nonlinear elasticity. (English) Zbl 1486.74117

In 1960’s–80’s Hashin introduced and studied nonlinear isotropic hollow cylinder and sphere assemblages. In this paper, the authors generalise Hashin’s work to nonlinear anisotropic solids; more precisely, to nonlinear transversely isotropic solids with a radial material preferred direction, for which a notion of similar shells can be properly defined. The effective constitutive equations are deduced and carefully analysed for sphere and cylinder assemblages in various settings.

MSC:

74Q20 Bounds on effective properties in solid mechanics
74B20 Nonlinear elasticity
74E10 Anisotropy in solid mechanics
74E30 Composite and mixture properties
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Full Text: DOI

References:

[1] Benveniste, Y.; Milton, G., New exact results for the effective electric, elastic, piezoelectric and other properties of composite ellipsoid assemblages, J. Mech. Phys. Solids, 51, 10, 1773-1813 (2003) · Zbl 1077.74591 · doi:10.1016/S0022-5096(03)00074-7
[2] Boehler, J.-P., A simple derivation of representations for non-polynomial constitutive equations in some cases of anisotropy, Z. Angew. Math. Mech., 59, 4, 157-167 (1979) · Zbl 0416.73002 · doi:10.1002/zamm.19790590403
[3] Doyle, T.; Ericksen, J., Nonlinear elasticity, Adv. Appl. Mech., 4, 53-115 (1956) · doi:10.1016/S0065-2156(08)70371-5
[4] Dryden, J. R., Elastic constants of spherulitic polymers, J. Mech. Phys. Solids, 36, 4, 477-498 (1988) · doi:10.1016/0022-5096(88)90029-4
[5] Ehret, A. E.; Itskov, M., Modeling of anisotropic softening phenomena: application to soft biological tissues, Int. J. Plast., 25, 5, 901-919 (2009) · Zbl 1160.74010 · doi:10.1016/j.ijplas.2008.06.001
[6] Ericksen, J. L., Deformations possible in every isotropic, incompressible, perfectly elastic body, Z. Angew. Math. Phys., 5, 6, 466-489 (1954) · Zbl 0059.17509 · doi:10.1007/BF01601214
[7] Ericksen, J. L.; Rivlin, R. S., Large elastic deformations of homogeneous anisotropic materials, J. Ration. Mech. Anal., 3, 281-301 (1954) · Zbl 0055.18103
[8] Golgoon, A.; Yavari, A., Nonlinear elastic inclusions in anisotropic solids, J. Elast., 130, 2, 239-269 (2018) · Zbl 1455.74016 · doi:10.1007/s10659-017-9639-0
[9] Golgoon, A.; Yavari, A., Line and point defects in nonlinear anisotropic solids, Z. Angew. Math. Phys., 69, 3, 1-28 (2018) · Zbl 1452.74017 · doi:10.1007/s00033-018-0973-2
[10] Goodbrake, C.; Yavari, A.; Goriely, A., The anelastic Ericksen problem: universal deformations and universal eigenstrains in incompressible nonlinear anelasticity, J. Elast., 142, 2, 291-381 (2020) · Zbl 1459.74021 · doi:10.1007/s10659-020-09797-2
[11] Gurney, C., An Analysis of the Stresses in a Flat Plate with a Reinforced Circular Hole Under Edge Forces (1938), London: H.M. Stationery Office, London
[12] Hashin, Z., The elastic moduli of heterogeneous materials, J. Appl. Mech., 29, 143-150 (1962) · Zbl 0102.17401 · doi:10.1115/1.3636446
[13] Hashin, Z., Large isotropic elastic deformation of composites and porous media, Int. J. Solids Struct., 21, 7, 711-720 (1985) · Zbl 0575.73051 · doi:10.1016/0020-7683(85)90074-5
[14] Hashin, Z.; Rosen, B. W., The elastic moduli of fiber-reinforced materials, J. Appl. Mech., 31, 2, 223-232 (1964) · doi:10.1115/1.3629590
[15] Hashin, Z.; Shtrikman, S., A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys., 33, 10, 3125-3131 (1962) · Zbl 0111.41401 · doi:10.1063/1.1728579
[16] Hashin, Z.; Shtrikman, S., A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, 11, 2, 127-140 (1963) · Zbl 0108.36902 · doi:10.1016/0022-5096(63)90060-7
[17] He, Q.-C.; Benveniste, Y., Exactly solvable spherically anisotropic thermoelastic microstructures, J. Mech. Phys. Solids, 52, 11, 2661-2682 (2004) · Zbl 1087.74022 · doi:10.1016/j.jmps.2004.03.012
[18] Liu, I., On representations of anisotropic invariants, Int. J. Eng. Sci., 20, 10, 1099-1109 (1982) · Zbl 0504.73001 · doi:10.1016/0020-7225(82)90092-1
[19] Lopez-Pamies, O.; Moraleda, J.; Segurado, J.; Llorca, J., On the extremal properties of Hashin’s hollow cylinder assemblage in nonlinear elasticity, J. Elast., 107, 1, 1-10 (2012) · Zbl 1331.74058 · doi:10.1007/s10659-011-9331-8
[20] Lu, J.; Papadopoulos, P., A covariant constitutive description of anisotropic non-linear elasticity, Z. Angew. Math. Phys., 51, 2, 204-217 (2000) · Zbl 0969.74010 · doi:10.1007/s000330050195
[21] Mansfield, E. H., Neutral holes in plane sheet – reinforced holes which are elastically equivalent to the uncut sheet, Q. J. Mech. Appl. Math., 6, 3, 370 (1953) · Zbl 0051.16201 · doi:10.1093/qjmam/6.3.370
[22] Marsden, J. E.; Hughes, T. J.R., Mathematical Foundations of Elasticity (1994), New York: Dover, New York · Zbl 0545.73031
[23] Merodio, J.; Ogden, R., Instabilities and loss of ellipticity in fiber-reinforced compressible non-linearly elastic solids under plane deformation, Int. J. Solids Struct., 40, 18, 4707-4727 (2003) · Zbl 1054.74721 · doi:10.1016/S0020-7683(03)00309-3
[24] Merodio, J.; Ogden, R., Tensile instabilities and ellipticity in fiber-reinforced compressible non-linearly elastic solids, Int. J. Eng. Sci., 43, 8, 697-706 (2005) · Zbl 1211.74036 · doi:10.1016/j.ijengsci.2005.01.001
[25] Mihai, L. A.; Goriely, A., How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity, Proc. R. Soc. A, 473, 2207 (2017) · Zbl 1404.74018 · doi:10.1098/rspa.2017.0607
[26] Milton, G. W., The Theory of Composites (2004), Cambridge: Cambridge University Press, Cambridge
[27] Reissner, H., Morduchow, M.: Reinforced circular cutouts in plane sheets. Technical Report Technical Note No. 1852 (1949)
[28] Schulgasser, K., Sphere assemblage model for polycrystals and symmetric materials, J. Appl. Phys., 54, 3, 1380-1382 (1983) · doi:10.1063/1.332161
[29] Smith, G. F.; Rivlin, R. S., The strain-energy function for anisotropic elastic materials, Trans. Am. Math. Soc., 88, 835, 175-193 (1958) · Zbl 0089.23505 · doi:10.1090/S0002-9947-1958-0095618-2
[30] Spencer, A., Part III. Theory of invariants, Contin. Phys., 1, 239-353 (1971)
[31] Spencer, A., The formulation of constitutive equation for anisotropic solids, Mechanical Behavior of Anisotropic Solids/Comportment Méchanique des Solides Anisotropes, 3-26 (1982), Berlin: Springer, Berlin · Zbl 0524.73015 · doi:10.1007/978-94-009-6827-1_1
[32] Spencer, A. J.M., Modelling of finite deformations of anisotropic materials, Large Deformations of Solids: Physical Basis and Mathematical Modelling, 41-52 (1986), Berlin: Springer, Berlin · doi:10.1007/978-94-009-3407-8_3
[33] Triantafyllidis, N.; Abeyaratne, R., Instabilities of a finitely deformed fiber-reinforced elastic material, J. Appl. Mech., 50, 1, 149-156 (1983) · Zbl 0511.73036 · doi:10.1115/1.3166983
[34] Truesdell, C.; Noll, W., The Non-linear Field Theories of Mechanics (2013), Berlin: Springer, Berlin · Zbl 0779.73004
[35] Yavari, A.: Universal deformations in inhomogeneous isotropic nonlinear elastic solids. Proc. R. Soc. A (2021)
[36] Yavari, A.; Golgoon, A., Nonlinear and linear elastodynamic transformation cloaking, Arch. Ration. Mech. Anal., 234, 1, 211-316 (2019) · Zbl 1459.74090 · doi:10.1007/s00205-019-01389-2
[37] Yavari, A.; Goriely, A., Universal deformations in anisotropic nonlinear elastic solids, J. Mech. Phys. Solids, 156 (2021) · doi:10.1016/j.jmps.2021.104598
[38] Yavari, A.; Marsden, J. E.; Ortiz, M., On the spatial and material covariant balance laws in elasticity, J. Math. Phys., 47, 85-112 (2006) · Zbl 1111.74004 · doi:10.1063/1.2190827
[39] Zheng, Q.-S.; Spencer, A., Tensors which characterize anisotropies, Int. J. Eng. Sci., 31, 5, 679-693 (1993) · Zbl 0772.73009 · doi:10.1016/0020-7225(93)90118-E
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.