×

Pathwise regularisation of singular interacting particle systems and their mean field limits. (English) Zbl 1509.60173

Summary: We investigate the regularising effect of certain perturbations by noise in singular interacting particle systems under the mean field scaling. In particular, we show that the addition of a suitably irregular path can regularise these dynamics and we recover the McKean-Vlasov limit under very broad assumptions on the interaction kernel; only requiring it to be controlled in a possibly distributional Besov space. In the particle system we include two sources of randomness, a common noise path \(Z\) which regularises the dynamics and a family of idiosyncratic noises, which we only assume to converge in mean field scaling to a representative noise in the McKean-Vlasov equation.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
35Q79 PDEs in connection with classical thermodynamics and heat transfer
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H50 Regularization by noise

References:

[1] Ambrosio, L.; Gigli, N.; Savare, G., Gradient Flows: In Metric Spaces and in the Space of Probability Measures (2008), Birkhäuser · Zbl 1145.35001
[2] Bahouri, H.; Chemin, J.-Y.; Danchin, R., Fourier Analysis and Nonlinear Partial Differential Equations (2011), Springer · Zbl 1227.35004
[3] Bailleul, I.; Catellier, R.; Delarue, F., Solving mean field rough differential equations, Electron. J. Probab., 25, 21, 51 (2020) · Zbl 1464.60056
[4] Bailleul, I.; Catellier, R.; Delarue, F., Propagation of Chaos for mean field rough differential equations, Ann. Probab., 49, 2, 944-996 (2021) · Zbl 1497.60073
[5] Baños, D.; Nilssen, T.; Proske, F., Strong existence and higher order Fréchet differentiability of stochastic flows of fractional Brownian motion driven SDEs with singular drift, J. Dynam. Differential Equations (2019)
[6] Biler, P.; Nadzieja, T., A class of nonlocal parabolic problems occurring in statistical mechanics, Colloquium Math., 66, 1, 131-145 (1993) · Zbl 0818.35046
[7] Bossy, M., Some stochastic particle methods for nonlinear parabolic PDEs, (GRIP—REsearch Group on Particle Interactions. GRIP—REsearch Group on Particle Interactions, 15 of ESAIM Proc. (2005), EDP Sci. Les Ulis), 18-57 · Zbl 1090.65008
[8] Bresch, D.; Jabin, P.-E.; Wang, Z., On mean-field limits and quantitative estimates with a large class of singular kernels: Application to the Patlak-Keller-Segel model, C. R. Math., 357, 9, 708-720 (2019) · Zbl 1428.35617
[9] Cass, T.; Lyons, T., Evolving communities with individual preferences, Proc. Lond. Math. Soc., 110, 08, 83-107 (2014) · Zbl 1321.60204
[10] Catellier, R.; Gubinelli, M., Averaging along irregular curves and regularisation of ODEs, Stochastic Process. Appl., 126, 8, 2323-2366 (2016) · Zbl 1348.60083
[11] Cattiaux, P.; Delebecque, F.; Pédèches, L., Stochastic Cucker—Smale models: Old and new, Ann. Appl. Probab., 28, 10, 3239-3286 (2018) · Zbl 1402.60071
[12] Chafaï, D., From boltzmann to random matrices and beyond, Ann. de la FacultÉ Des Sci. de Toulouse Math., 24, 4, 641-689 (2015) · Zbl 1342.80001
[13] Chaintron, L.-P.; Diez, A., Propagation of Chaos: A review of models, methods and applications (2021)
[14] Chaudru de Raynal, P.-E.; Frikha, N., From the backward Kolmogorov PDE on the Wasserstein space to propagation of Chaos for McKean-Vlasov SDEs, J. Math. Pures Appl., 156, 9, 1-124 (2021) · Zbl 1481.60105
[15] Chaudru de Raynal, P.-E.; Frikha, N., Well-posedness for some non-linear SDEs and related PDE on the Wasserstein space, J. Math. Pures Appl., 159, 9, 1-167 (2022) · Zbl 1494.60063
[16] Coghi, M.; Deuschel, J.-D.; Friz, P.; Maurelli, M., Pathwise McKean-Vlasov theory with additive noise, Ann. Appl. Probab., 30, 10, 2355-2392 (2020) · Zbl 1470.60083
[17] Coghi, M.; Nilssen, T., Rough nonlocal diffusions, Stochastic Process. Appl., 141, 1-56 (2021) · Zbl 1480.60301
[18] Davie, A. M., Uniqueness of solutions of stochastic differential equations, Int. Math. Res. Not., 2007, 01, rnm124 (2007) · Zbl 1139.60028
[19] De Luca, L.; Friesecke, G., Crystallization in two dimensions and a discrete Gauss-Bonnet theorem, J. Nonlinear Sci., 28, 1, 69-90 (2018) · Zbl 1382.82047
[20] Delarue, F.; Flandoli, F.; Vincenzi, D., Noise prevents collapse of Vlasov-Poisson point charges, Comm. Pure Appl. Math., 67, 10, 1700-1736 (2013) · Zbl 1302.35366
[21] Dobrushin, R. L.; Kotecký, R.; Shlosman, S., Wulff Construction: A Global Shape from Local Interaction (1992), American Mathematical Society · Zbl 0917.60103
[22] Duerinckx, M., Mean-field limits for some Riesz interaction gradient flows, SIAM J. Math. Anal., 48, 3, 2269-2300 (2016) · Zbl 1348.82050
[23] Flandoli, F.; Gubinelli, M.; Priola, E., Full well-posedness of point vortex dynamics corresponding to stochastic 2D Euler equations, Stochastic Process. Appl., 121, 7, 1445-1463 (2011) · Zbl 1221.60082
[24] Fournier, N.; Hauray, M.; Mischler, S., Propagation of Chaos for the 2D viscous vortex model, J. Eur. Math. Soc., 16, 7, 1423-1466 (2014) · Zbl 1299.76040
[25] Fournier, N.; Jourdain, B., Stochastic particle approximation of the Keller-Segel equation and two-dimensional generalization of Bessel processes, Ann. Appl. Probab., 27, 5, 2807-2861 (2017) · Zbl 1447.65106
[26] Friesen, M.; Kutoviy, O., Stochastic Cucker-Smale flocking dynamics of jump-type, Kinet. Relat. Models, 13, 2, 211-247 (2020) · Zbl 1437.35661
[27] Friz, P. K.; Hairer, M., Course on Rough Paths (2014), Springer International Publishing · Zbl 1327.60013
[28] Galeati, L., Nonlinear Young Differential Equations: A Review, J. Dynam. Differential Equations (2021)
[29] Galeati, L.; Gubinelli, M., Prevalence of \(\rho \)-irregularity and related properties (2020), Available at: https://arxiv.org/abs/2004.00872
[30] Galeati, L.; Gubinelli, M., Noiseless regularisation by noise, Rev. Mat. Iberoam., 38, 2, 433-502 (2022) · Zbl 1510.60066
[31] Galeati, L.; Harang, F. A., Regularization of multiplicative SDEs through additive noise, Ann. Appl. Probab., 32, 5, 3930-3963 (2022) · Zbl 1529.60039 · doi:10.1214/21-aap1778
[32] Galeati, L.; Harang, F. A.; Mayorcas, A., Distribution dependent SDEs driven by additive continuous noise, Electron. J. Probab., 27, 37, 38 (2022) · Zbl 1492.60168
[33] Galeati, L.; Harang, F. A.; Mayorcas, A., Distribution dependent SDEs driven by additive fractional Brownian motion, Probab. Theory Related Fields (2022)
[34] Geman, D.; Horowitz, J., Occupation densities, Ann. Probab., 8, 1, 1-67 (1980) · Zbl 0499.60081
[35] Gerencsér, M., Regularisation by regular noise, (Stoch. PDE: Anal. Comp (2022), Springer)
[36] Gomes, S. N.; Stuart, A. M.; Wolfram, M.-T., Parameter estimation for macroscopic pedestrian dynamics models from microscopic data, SIAM J. Appl. Math., 79, 4, 1475-1500 (2019) · Zbl 1420.35112
[37] Hambly, B.; Ledger, S.; Søjmark, A., A McKean-Vlasov equation with positive feedback and blow-ups, Ann. Appl. Probab., 29, 08, 2338-2373 (2019) · Zbl 1423.35224
[38] Han, Y., Entropic propagation of Chaos for mean field diffusion with \(l^p\) interactions via hierarchy, linear growth and fractional noise (2022)
[39] Harang, F. A.; Ling, C., Regularity of Local Times Associated with Volterra-Lévy Processes and Path-Wise Regularization of Stochastic Differential Equations, J. Theoret. Probab. (2021)
[40] Harang, F. A.; Perkowski, N., C-infinity regularization of ODEs perturbed by noise, Stoch. Dyn. (2020)
[41] Holding, T., Propagation of Chaos for Hölder continuous interaction kernels via Glivenko-Cantelli (2016)
[42] Hörmander, L., The analysis of linear partial differential operators. I, (Classics in Mathematics (2003), Springer-Verlag: Springer-Verlag Berlin) · Zbl 1028.35001
[43] Hunt, B. R., The prevalence of continuous nowhere differentiable functions, Proc. Amer. Math. Soc., 122, 3, 711-717 (1994) · Zbl 0861.26003
[44] Jabin, P.-E.; Wang, Z., Mean Field Limit for Stochastic Particle Systems, 379-402 (2017), Springer International Publishing
[45] Jabin, P.-E.; Wang, Z., Quantitative estimates of propagation of Chaos for stochastic systems with \(W^{- 1 , \infty}\) kernels, Invent. Math., 214, 1, 523-591 (2018) · Zbl 1402.35208
[46] Krylov, N. V.; Röckner, M., Strong solutions for stochastic equations with singular time dependent drift, Th. Rel. Fields, 154-196 (2005) · Zbl 1072.60050
[47] Lacker, D., Hierarchies, entropy, and quantitative propagation of Chaos for mean field diffusions (2021)
[48] Marchioro, C.; Pulvirenti, M., Mathematical Theory of Incompressible Nonviscous Fluids (1994), Springer-Verlag · Zbl 0789.76002
[49] Marx, V., Infinite-dimensional regularization of Mckean-Vlasov equation with a wasserstein diffusion (2020)
[50] Meyer-Brandis, T.; Proske, F., Construction of strong solutions of SDE’s via Malliavin calculus, J. Funct. Anal., 258, 11, 3922-3953 (2010) · Zbl 1195.60082
[51] Serfaty, S., Mean field limit for coulomb-type flows, Duke Math. J., 169, 10, 2887-2935 (2020) · Zbl 1475.35341
[52] Sznitman, A.-S., Topics in propagation of Chaos, (Hennequin, P.-L., Ecole D’eté de Probabilités de Saint-Flour XIX — 1989 (1991), Springer Berlin Heidelberg), 165-251 · Zbl 0732.60114
[53] Tanaka, H., Limit theorems for certain diffusion processes with interaction, (Stochastic Analysis (K. Itô, ed.). Stochastic Analysis (K. Itô, ed.), 32 of North-Holland Mathematical Library (1984), Elsevier), 469-488 · Zbl 0552.60051
[54] Theil, F., A proof of crystallization in two dimensions, Comm. Math. Phys., 262, 1, 209-236 (2005) · Zbl 1113.82016
[55] Tzen, B.; Raginsky, M., A mean-field theory of lazy training in two-layer neural nets: Entropic regularization and controlled McKean-Vlasov dynamics (2020), Available at: https://arxiv.org/abs/2002.01987
[56] Veretennikov, A. J., On strong solutions and explicit formulas for solutions of stochastic integral equations, Math. USSR-Sbornik, 39, 387-403 (1981) · Zbl 0462.60063
[57] Villani, C., Topics in optimal transportation, (Graduate Studies in Mathematics (2003), American Mathematical Society) · Zbl 1106.90001
[58] Zvonkin, A. K., A transofmation of the phase space of a diffusion process that removes the drift, Math. USSR-Sbornik, 22, 129-149 (1974) · Zbl 0306.60049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.