×

The adjoint double layer potential on smooth surfaces in \(\mathbb{R}^3\) and the Neumann problem. (English) Zbl 1537.65197

Summary: We present a simple yet accurate method to compute the adjoint double layer potential, which is used to solve the Neumann boundary value problem for Laplace’s equation in three dimensions. An expansion in curvilinear coordinates leads us to modify the expression for the adjoint double layer so that the singularity is reduced when evaluating the integral on the surface. Then, to regularize the integral, we multiply the Green’s function by a radial function with length parameter \(\delta\) chosen so that the product is smooth. We show that a natural regularization has error \(O(\delta^3)\), and a simple modification improves the error to \(O(\delta^5)\). The integral is evaluated numerically without the need of special coordinates. We use this treatment of the adjoint double layer to solve the classical integral equation for the interior Neumann problem, altered to account for the solvability condition, and evaluate the solution on the boundary. Choosing \(\delta = ch^{4/5}\), we find about \(O(h^4)\) convergence in our examples, where \(h\) is the spacing in a background grid.

MSC:

65R20 Numerical methods for integral equations
65D30 Numerical integration
65N38 Boundary element methods for boundary value problems involving PDEs
31B10 Integral representations, integral operators, integral equations methods in higher dimensions

References:

[1] Atkinson, KE, The Numerical Solution of Integral Equations of the Second Kind, 1997, Press: Cambridge Univ, Press · Zbl 0899.65077 · doi:10.1017/CBO9780511626340
[2] Beale, JT, A grid-based boundary integral method for elliptic problems in three dimensions, SIAM J. Numer. Anal., 42, 2, 599-620, 2004 · Zbl 1159.65368 · doi:10.1137/S0036142903420959
[3] Beale, J.T.: Neglecting discretization corrections in regularized singular or nearly singular integrals. Cornell University Library arXiv:2004.06686 (2020)
[4] Beale, JT, Solving partial differential equations on closed surfaces with planar cartesian grids, SIAM J. Sci. Comput., 42, 2, A1052-A1070, 2020 · Zbl 1448.65091 · doi:10.1137/19M1272135
[5] Beale, J.T., Tlupova, S.: Extrapolated regularization of nearly singular integrals on surfaces. Cornell University Library, arXiv:2309.14169 (2023)
[6] Beale, JT; Ying, W.; Wilson, JR, A simple method for computing singular or nearly singular integrals on closed surfaces, Commun. Comput. Phys., 20, 3, 733-753, 2016 · Zbl 1388.65167 · doi:10.4208/cicp.030815.240216a
[7] Boateng, HA; Tlupova, S., A treecode algorithm based on tricubic interpolation, J. Comp. Math. Data Sci., 5, 100068, 2022 · doi:10.1016/j.jcmds.2022.100068
[8] Bremer, J.; Gimbutas, Z., A Nyström method for weakly singular integral operators on surfaces, J. Comput. Phys., 231, 4885-4903, 2012 · Zbl 1245.65177 · doi:10.1016/j.jcp.2012.04.003
[9] Bruno, OP; Kunyansky, LA, A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications, J. Comput. Phys., 169, 80-110, 2001 · Zbl 1052.76052 · doi:10.1006/jcph.2001.6714
[10] Colton, D.; Kress, R., Integral Equation Methods in Scattering Theory, 2016, Mineola NY: Dover, Mineola NY
[11] Cortez, R., The method of regularized Stokeslets, SIAM J. Sci. Comput., 23, 1204, 2001 · Zbl 1064.76080 · doi:10.1137/S106482750038146X
[12] Cortez, R.; Fauci, L.; Medovikov, A., The method of regularized Stokeslets in three dimensions: Analysis, validation, and application to helical swimming, Phys. Fluids, 17, 031504, 2005 · Zbl 1187.76105 · doi:10.1063/1.1830486
[13] DoCarmo, MP, Differential Geometry of Curves and Surfaces, 2013, Philadelphia: SIAM, Philadelphia
[14] Folland, G., Introduction to Partial Differential Equations, 1995, Princeton, NJ: Princeton University Press, Princeton, NJ · Zbl 0841.35001
[15] Greengard, L., O’Neil, M., Rachh, M., Vico, F.: Fast multipole methods for the evaluation of layer potentials with locally-corrected quadratures. J. Comput. Phys.: X, 10100092 (2021) · Zbl 07785551
[16] Hackbusch, W., Elliptic Differential Equations: Theory and Numerical Treatment, 2017, Berlin: Springer, Berlin · Zbl 1379.35001 · doi:10.1007/978-3-662-54961-2
[17] J. Helsing. A higher-order singularity subtraction technique for the discretization of singular integral operators on curved surfaces. Cornell University Library, arXiv:1301.7276 (2013)
[18] Hoskins, J., Rachh, M.: On the discretization of Laplace’s equation with Neumann boundary conditions on polygonal domains. J. Comput. Phys.: X, 8100072 (2020) · Zbl 07785542
[19] Hsiao, GC; Wendland, WL, Boundary Integral Equations, 2008, Berlin: Springer-Verlag, Berlin · Zbl 1157.65066 · doi:10.1007/978-3-540-68545-6
[20] Izzo, F.; Runborg, O.; Tsai, R., Corrected trapezoidal rules for singular implicit boundary integrals, J. Comput. Phys., 461, 2022 · Zbl 07525171 · doi:10.1016/j.jcp.2022.111193
[21] Klöckner, A.; Barnett, A.; Greengard, L.; O’Neil, M., Quadrature by expansion: A new method for the evaluation of layer potentials, J. Comput. Phys., 252, 332-349, 2013 · Zbl 1349.65094 · doi:10.1016/j.jcp.2013.06.027
[22] Kress, R., Linear Integral Equations, 1999, New York: Springer-Verlag, New York · Zbl 0920.45001 · doi:10.1007/978-1-4612-0559-3
[23] Nédélec, J-C, Acoustic and Electromagnetic Equations: Integral Representations for Har- monic Problems, 2001, New York: Springer-Verlag, New York · Zbl 0981.35002 · doi:10.1007/978-1-4757-4393-7
[24] Pérez-Arancibia, C.; Turc, C.; Faria, L., Planewave density interpolation methods for 3D Helmholtz boundary integral equations, SIAM J. Sci. Comput., 41, A2088-A2116, 2019 · Zbl 1430.45001 · doi:10.1137/19M1239866
[25] Pozrikidis, C., Interfacial dynamics for Stokes flow, J. Comput. Phys., 169, 250-301, 2001 · Zbl 1046.76012 · doi:10.1006/jcph.2000.6582
[26] Sauter, S., Schwab, C.: Boundary Element Methods. Springer, (2010)
[27] Siegel, M.; Tornberg, A-K, A local target specific quadrature by expansion method for evaluation of layer potentials in 3D, J. Comput. Phys., 364, 365-392, 2018 · Zbl 1398.65356 · doi:10.1016/j.jcp.2018.03.006
[28] Tlupova, S.; Beale, JT, Regularized single and double layer integrals in 3D Stokes flow, J. Comput. Phys., 386, 568-584, 2019 · Zbl 1452.76196 · doi:10.1016/j.jcp.2019.02.031
[29] Wang, L.; Krasny, R.; Tlupova, S., A kernel-independent treecode algorithm based on barycentric Lagrange interpolation, Commun. Comput. Phys., 28, 4, 1415-1436, 2020 · Zbl 1473.65025 · doi:10.4208/cicp.OA-2019-0177
[30] Wilson, J.R.: On computing smooth, singular and nearly singular integrals on implicitly defined surfaces. PhD thesis, Duke University, (2010.) http://search.proquest.com/docview/744476497
[31] Wu, B.; Martinsson, PG, Corrected trapezoidal rules for singular implicit boundary integrals, Numer. Math., 149, 1025-71, 2021 · Zbl 1477.65272 · doi:10.1007/s00211-021-01244-1
[32] Xie, Y.; Ying, W., A fourth-order kernel-free boundary integral method for implicitly defined surfaces in three space dimensions, J. Comput. Phys., 415, 2020 · Zbl 1440.65158 · doi:10.1016/j.jcp.2020.109526
[33] Ying, L.; Biros, G.; Zorin, D., A high-order 3D boundary integral equation solver for elliptic PDEs in smooth domains, J. Comput. Phys., 219, 247-275, 2006 · Zbl 1105.65115 · doi:10.1016/j.jcp.2006.03.021
[34] Zinchenko, AZ; Rother, MA; Davis, RH, A novel boundary-integral algorithm for viscous interaction of deformable drops, Phys. Fluids, 9, 1493-1511, 1997 · doi:10.1063/1.869275
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.