×

A simple yet efficient two-step fifth-order weighted-Newton method for nonlinear models. (English) Zbl 07676516

Summary: An iterative method with fifth order of convergence for solving nonlinear systems is formulated and analyzed. Primary goal of the development of method is to keep the both, convergence order and computational efficiency, as high as possible. Both of these factors are investigated thoroughly in theoretical as well as numerical manner. Comparison with the existing iterative methods of similar order is carried out to examine the performance of method. Numerical testing clearly indicates the high degree of precision and efficiency of the new method.

MSC:

65H10 Numerical computation of solutions to systems of equations
65J10 Numerical solutions to equations with linear operators
49M15 Newton-type methods

Software:

Mathematica
Full Text: DOI

References:

[1] Ostrowski, AM, Solution of Equation and Systems of Equations (1960), New York: Academic Press, New York · Zbl 0115.11201
[2] Ortega, JM; Rheinboldt, WC, Iterative Solution of Nonlinear Equations in Several Variables (1970), New York: Academic Press, New York · Zbl 0241.65046
[3] Traub, JF, Iterative Methods for the Solution of Equations (1982), New York: Chelsea Publishing Company, New York · Zbl 0472.65040
[4] McNamee, JM, Numerical Methods for Roots of Polynomials Part, vol. I (2007), Amsterdam: Elsevier, Amsterdam · Zbl 1143.65002
[5] Grau-Sánchez, M.; Grau, À.; Noguera, M., On the computational efficiency index and some iterative methods for solving systems of nonlinear equations, J. Comput. Appl. Math., 236, 1259-1266 (2011) · Zbl 1231.65090 · doi:10.1016/j.cam.2011.08.008
[6] Cordero, A.; Hueso, JL; Martínez, E.; Torregrosa, JR, Increasing the convergence order of an iterative method for nonlinear systems, Appl. Math. Lett., 25, 2369-2374 (2012) · Zbl 1252.65093 · doi:10.1016/j.aml.2012.07.005
[7] Xu, Z.; Jieqing, T., The fifth order of three-step iterative methods for solving systems of nonlinear equations, Math. Numer. Sin., 35, 297-304 (2013) · Zbl 1299.65105
[8] Sharma, JR; Gupta, P., An efficient fifth order method for solving systems of nonlinear equations, Comput. Math. Appl., 67, 591-601 (2014) · Zbl 1350.65048 · doi:10.1016/j.camwa.2013.12.004
[9] Xiao, XY; Yin, H., A new class of methods with higher order of convergence for solving systems of nonlinear equations, Appl. Math. Comput., 264, 300-309 (2015) · Zbl 1410.65203 · doi:10.1016/j.amc.2015.04.094
[10] Choubey, N.; Jaiswal, JP, Improving the order of convergence and efficiency index of an iterative method for nonlinear systems, Proc. Natl. Acad. Sci. India A - Phys. Sci., 86, 221-227 (2016) · Zbl 1382.65139 · doi:10.1007/s40010-016-0266-0
[11] Sharma, JR; Guha, RK, Simple yet efficient Newton-like method for systems of nonlinear equations, Calcolo, 53, 451-473 (2016) · Zbl 1378.65108 · doi:10.1007/s10092-015-0157-9
[12] Cordero, A.; Gómez, E.; Torregrosa, JR, Efficient high-order iterative methods for solving nonlinear systems and their application on heat conduction problems, Complexity, 2017, 6457532 (2017) · Zbl 1367.65117 · doi:10.1155/2017/6457532
[13] Xiao, XY; Yin, H., Accelerating the convergence speed of iterative methods for solving nonlinear systems, Appl. Math. Comput., 333, 8-19 (2018) · Zbl 1427.65084 · doi:10.1016/j.amc.2018.03.108
[14] Sharma, R., Sharma, J. R., Kalra, N.: A Modified Newton-\( \overset{..}{\text{O}}\) zban composition for solving nonlinear systems. Int. J. Comput. Methods 17, 1950047 (2020) · Zbl 07336579
[15] Wu, S.; Wang, H., A modified Newton-like method for nonlinear equations, Comput. Appl. Math., 39, 1-18 (2020) · Zbl 1463.65119 · doi:10.1007/s40314-020-01283-8
[16] Solaiman, OS; Hashim, I., An iterative scheme of arbitrary odd order and its basins of attraction for nonlinear systems, Comput. Mater. Contin., 66, 1427-1444 (2021)
[17] Kansal, M.; Cordero, A.; Bhalla, S.; Torregrosa, JR, New fourth-and sixth-order classes of iterative methods for solving systems of nonlinear equations and their stability analysis, Numer. Algorithms, 87, 1017-1060 (2021) · Zbl 1470.65103 · doi:10.1007/s11075-020-00997-4
[18] Behl, R.; Bhalla, S.; Magreñán, ÁA; Kumar, S., An efficient high order iterative scheme for large nonlinear systems with dynamics, J. Comput. Appl. Math., 404, 113249 (2022) · Zbl 1481.65075 · doi:10.1016/j.cam.2020.113249
[19] Arroyo, V.; Cordero, A.; Torregrosa, JR, Approximation of artificial satellites’ preliminary orbits: The efficiency challenge, Math. Comput. Model., 54, 1802-1807 (2011) · Zbl 1235.70032 · doi:10.1016/j.mcm.2010.11.063
[20] Brent, RP, Some efficient algorithms for solving systems of nonlinear equations, SIAM J. Numer. Anal., 10, 327-344 (1973) · Zbl 0258.65051 · doi:10.1137/0710031
[21] Wolfram, S.: The Mathematica Book. Wolfram Media, 5th. edn (2003)
[22] Chandrasekhar, S., Radiative Transfers (1960), New York: Dover, New York
[23] Hueso, JL; Martínez, E.; Teruel, C., Convergence, efficiency and dynamics of new fourth and sixth order families of iterative methods for nonlinear systems, J. Comput. Appl. Math., 275, 412-420 (2015) · Zbl 1334.65092 · doi:10.1016/j.cam.2014.06.010
[24] Singh, H.; Sharma, JR, Reduced cost numerical methods of sixth-order convergence for systems of nonlinear models, Rev. Real Acad. Cienc. Exactas Fis. Nat. - A: Mat., 116, 1-24 (2022) · Zbl 1496.65065
[25] Narang, M.; Bhatia, S.; Alshomrani, AS; Kanwar, V., General efficient class of Steffensen type methods with memory for solving systems of nonlinear equations, J. Comput. Appl. Math., 352, 23-39 (2019) · Zbl 1410.65193 · doi:10.1016/j.cam.2018.10.048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.