×

New fourth- and sixth-order classes of iterative methods for solving systems of nonlinear equations and their stability analysis. (English) Zbl 1470.65103

Summary: In this paper, a two-step class of fourth-order iterative methods for solving systems of nonlinear equations is presented. We further extend the two-step class to establish a new sixth-order family which requires only one additional functional evaluation. The convergence analysis of the proposed classes is provided under several mild conditions. A complete dynamical analysis is made, by using real multidimensional discrete dynamics, in order to select the most stable elements of both families of fourth- and sixth-order of convergence. To get this aim, a novel tool based on the existence of critical points has been used, the parameter line. The analytical discussion of the work is upheld by performing numerical experiments on some application-oriented problems. We provide an implementation of the proposed scheme on nonlinear optimization problem and zero-residual nonlinear least-squares problems taken from the constrained and unconstrained testing environment test set. Finally, based on numerical results, it has been concluded that our methods are comparable with the existing ones of similar nature in terms of order, efficiency, and computational time and also that the stability results provide the most efficient member of each class of iterative schemes.

MSC:

65H10 Numerical computation of solutions to systems of equations
65Y20 Complexity and performance of numerical algorithms

References:

[1] Cordero, A.; Torregrosa, JR, Variants of Newton’s method for functions of several variables, Appl. Math. Comput., 183, 199-208 (2006) · Zbl 1123.65042
[2] Frontini, M.; Sormani, E., Third-order methods from quadrature formulae for solving systems of nonlinear equations, Appl. Math. Comput., 149, 771-782 (2004) · Zbl 1050.65055
[3] Grau-Sánchez, M.; Grau, À.; Noguera, M., On the computational efficiency index and some iterative methods for solving systems of non-linear equations, Comput. Appl. Math., 236, 1259-1266 (2011) · Zbl 1231.65090 · doi:10.1016/j.cam.2011.08.008
[4] Homeier, HHH, A modified Newton method with cubic convergence:the multivariable case, Comput Appl. Math., 169, 161-169 (2004) · Zbl 1059.65044 · doi:10.1016/j.cam.2003.12.041
[5] Cordero, A.; Torregrosa, JR, Variants of Newton’s method using fifth-order quadrature formulas, Comput. Appl. Math., 190, 686-698 (2007) · Zbl 1122.65350
[6] Darvishi, MT; Barati, A., Super cubic iterative methods to solve systems of nonlinear equations, Appl. Math. Comput., 188, 1678-1685 (2007) · Zbl 1119.65045
[7] Darvishi, MT; Barati, A., A third-order Newton-type method to solve systems of non-linear equations, Appl.Math. Comput., 187, 630-635 (2007) · Zbl 1116.65060
[8] Potra, F. A., Pták, V.: Nondiscrete Induction and Iterarive Processes Pitman Publishing Boston (1984) · Zbl 0549.41001
[9] Babajee, DKR; Madhu, K.; Jayaraman, J., On some improved harmonic mean Newton-like methods for solving systems of nonlinear equations, Algor., 8, 895-909 (2015) · Zbl 1461.65085 · doi:10.3390/a8040895
[10] Cordero, A.; Torregrosa, JR, Iterative methods of order four and five for systems of nonlinear equations, Comput. Appl. Math., 231, 541-551 (2009) · Zbl 1173.65034 · doi:10.1016/j.cam.2009.04.015
[11] Cordero, A.; Hueso, JL; Martínez, E.; Torregrosa, JR, Efficient high-order methods based on golden ratio for nonlinear systems, Appl. Math. Comput., 217, 4548-4556 (2011) · Zbl 1228.65077
[12] Arroyo, V.; Cordero, A.; Torregrosa, JR, Approximation of artificial satellites’ preliminary orbits: the efficiency challenge, Math. Comput. Modelling, 54, 1802-1807 (2011) · Zbl 1235.70032 · doi:10.1016/j.mcm.2010.11.063
[13] Cordero, A.; Torregrosa, JR, Variants of Newton’s method using fifth-order quadrature formulas, Appl. Math. Comput., 190, 686-698 (2007) · Zbl 1122.65350
[14] Narang, M.; Bhatia, S.; Kanwar, V., New two-parameter Chebyshev Halley-like family of fourth and sixth-order methods for systems of nonlinear equations, Appl. Math. Comput., 275, 394-403 (2016) · Zbl 1410.65194
[15] Lotfi, T.; Bakhtiari, P.; Cordero, A.; Mahdiani, K.; Torregrosa, JR, Some new efficient multipoint iterative methods for solving nonlinear systems of equations, Int. J. Comput. Math., 92, 1921-1934 (2015) · Zbl 1328.65124 · doi:10.1080/00207160.2014.946412
[16] Alzahrani, AKH; Behl, R.; Alshomrani, A., Some higher-order iteration functions for solving nonlinear models, Appl. Math. Comput., 334, 80-93 (2018) · Zbl 1427.65074
[17] Babajee, DKR, On a two-parameter Chebyshev-Halley like family of optimal two-point fourth order methods free from second derivatives, Afrika Matematika., 26, 689-695 (2015) · Zbl 1321.65081 · doi:10.1007/s13370-014-0237-z
[18] Behl, R., Kanwar, V.: Highly efficient classes of Chebyshev-Halley type methods free from second-order derivative (2014) · Zbl 1307.65059
[19] Ortega, J. M., Rheinboldt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables Academic Press New York (1970) · Zbl 0241.65046
[20] Cordero, A.; Hueso, JL; Torregrosa, JR, A modified Newton-Jarratt’s composition, Numer. Algor., 55, 87-99 (2010) · Zbl 1251.65074 · doi:10.1007/s11075-009-9359-z
[21] Fatou, P., Sur les équations fonctionelles, Bull. Soc. Mat. Fr. 47 (1919) 161-271, 48, 33-94 (1920) · JFM 47.0921.02
[22] Julia, G., Mémoire sur l’iteration des fonctions rationnelles, J. Mat. Pur. Appl., 8, 47-245 (1918) · JFM 46.0520.06
[23] Chicharro, F.I., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods, The Scientific World Journal, Volume 2013, Article ID 780153, 11 pages · Zbl 1305.70018
[24] Cordero, A.; García, J.; Torregrosa, JR; Vassileva, MP; Vindel, P., Chaos in King’s iterative family, Appl. Math. Letters, 26, 842-848 (2013) · Zbl 1370.37155 · doi:10.1016/j.aml.2013.03.012
[25] Amat, S.; Busquier, S.; Bermúdez, C.; Plaza, S., On two families of high order Newton type methods, Appl. Math. Letters, 25, 2209-2217 (2012) · Zbl 1252.65090 · doi:10.1016/j.aml.2012.06.004
[26] Neta, B.; Chun, C.; Scott, M., Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations, Appl. Math. Comput., 227, 567-592 (2014) · Zbl 1364.65110
[27] Amat, S.; Busquier, S.; Plaza, S., Chaotic dynamics of a third-order Newton-type method, J. Math. Anal. Appl., 366, 24-32 (2010) · Zbl 1187.65050 · doi:10.1016/j.jmaa.2010.01.047
[28] Cordero, A.; Torregrosa, JR; Vindel, P., Dynamics of a family of Chebyshev-Halley type methods, Appl. Math. Comput., 219, 8568-8583 (2013) · Zbl 1288.65065
[29] Geum, YH; Kim, YI; Neta, B., A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points, Appl. Math. Comput., 283, 120-140 (2016) · Zbl 1410.65160
[30] Cordero, A.; Giménez-Palacios, I.; Torregrosa, JR, Avoiding strange attractors in efficient parametric families of iterative methods for solving nonlinear problems, Appl. Num. Math., 137, 1-18 (2019) · Zbl 1407.65051 · doi:10.1016/j.apnum.2018.12.006
[31] Cordero, A.; Soleymani, F.; Torregrosa, JR, Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension?, Appl. Math. Comput., 244, 398-412 (2014) · Zbl 1336.65089
[32] Chicharro, F.I., Cordero, A., Torregrosa, J.T.: Real stability of an efficient family of iterative methods for solving nonlinear systems. In: Proceedings of XXV Congreso de ecuaciones diferenciales y aplicaciones CEDYA 2017, ISBN 978-84-944402-1-2, 206-212 Chicharro, F.I., Cordero, A., Torregrosa, J.T.: Real stability of an efficient family of iterative methods for solving nonlinear systems. Proceedings of XXV Congreso de ecuaciones diferenciales y aplicaciones CEDYA 2017, ISBN 978-84-944402-1-2, 206-212 (2017) · Zbl 1305.70018
[33] Robinson, R. C.: An introduction to dynamical systems, continous and discrete, americal mathematical society, providence, RI USA (2012) · Zbl 1277.37001
[34] Devaney, R. L.: An Introduction to Chaotic Dynamical Systems Advances in Mathematics and Engineering CRC Press (2003)
[35] Sharma, JR; Arora, H., Efficient Jarratt-like methods for solving systems of nonlinear equations, Calcolo, 51, 193-210 (2014) · Zbl 1311.65052 · doi:10.1007/s10092-013-0097-1
[36] Jarratt, P., Some fourth order multipoint iterative methods for solving equations, Math. Comput., 20, 434-437 (1966) · Zbl 0229.65049 · doi:10.1090/S0025-5718-66-99924-8
[37] Hillstrom, KE, A stmulatlon test approach to the evaluation of nonlinear optimization algorithms, ACM Trans. Math Softw., 3, 4, 305-315 (1977) · doi:10.1145/355759.355760
[38] Box, MJ, A comparison of several current optimization methods, and the use of transformations in constrained problems, Comput. J, 9, 67-77 (1966) · Zbl 0146.13304 · doi:10.1093/comjnl/9.1.67
[39] Recktenwald, G.: Least squares fitting of data to a curve, department of mechanical engineering portland state university (2001)
[40] Argyros, I.K., Hilout, S.: Computational Methods In Nonlinear Analysis: Efficient Algorithms, Fixed Point Theory And Applications, World Scientific Publications (2013) · Zbl 1279.65062
[41] Kamenetskii, F., Al’bertovich, D.: Diffusion and heat transfer in chemical kinetics Plenum Press (1969)
[42] Alaidarous, E. S., Ullah, M. Z., Ahmad, F., Al-Fhaid, A. S.: An Efficient Higher-Order Quasilinearization Method for Solving Nonlinear BVPs J Appl Math Hindawi pulisher (2013) · Zbl 1397.34046
[43] Dolan, ED; Moŕe, JJ, Benchmarking optimization software with performance profiles, Math. Program., 91, 201-213 (2002) · Zbl 1049.90004 · doi:10.1007/s101070100263
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.