×

Weighted infinitesimal unitary bialgebras of rooted forests, symmetric cocycles and pre-Lie algebras. (English) Zbl 1476.16041

A weighted infinitesimal unitary bialgebra is a module \(A\), which is simultaneously an algebra (possibly without a unit) and a coalgebra (possibly without a counit) such that the coproduct \(\Delta\) is a weighted derivation of \(A\): \[ \Delta(ab)=a\Delta(b)+\Delta(a)b+\lambda a\otimes b,\quad \lambda\in k \] Take an associative classical Young-Baxter equation \[ r_{13}r_{12}-r_{12}r_{23}+r_{23}r_{13}=\lambda r_{13} \] Then any solution of this equarion in an algebra \(A\) endows \(A\) with an infinitesimal unitary bialgebra of weight zero. If one takes an nonhomogenous associative classical Yang-Baxter equation \[ r_{13}r_{12}-r_{12}r_{23}+r_{23}r_{13}=\lambda r_{13} \] then the coproduct \[ \Delta_r(a)=a\dot r-r\dot a-\lambda (a\otimes 1) \] is weighter derivation [O. Ogievetsky and T. Popov, Adv. Theor. Math. Phys. 14, No. 2, 439–505 (2010; Zbl 1208.81118)].
Also such algebras appear naturally in combinatorics [S. A. Joni and G. C. Rota, Stud. Appl. Math. 61, 93–139 (1979; Zbl 0471.05020)]. The authors “introduce the concept of symmetric \(1\)-cocycle condition, which is derived from the dual of the Hochschild cohomology. Also they study the universal properties of the space of decorated planar rooted forests with the symmetric \(1\)-cocycle, leading to the notation of a weighted \(\Omega\)-cocycle infinitesimal unitary bialgebra. As an application, they obtain the initial object in the category of free cocycle infinitesimal unitary bialgebras on the undecorated planar rooted forests, which is the object studied in the well-known noncommutative Connes-Kreimer Hopf algebra. Finally, they construct a pre-Lie algebra on decorated planar rooted forests”.

MSC:

16W99 Associative rings and algebras with additional structure
05C05 Trees
16S10 Associative rings determined by universal properties (free algebras, coproducts, adjunction of inverses, etc.)
16T10 Bialgebras
16T30 Connections of Hopf algebras with combinatorics
17B60 Lie (super)algebras associated with other structures (associative, Jordan, etc.)
Full Text: DOI

References:

[1] Aguiar, M.: Infinitesimal Hopf algebras, Contemporary Mathematics, New trends in Hopf algebra theory (La Falda, 1999), 1-29, Contemp. Math., 267 Amer. Math. Soc., Providence, RI (2000). https://mathscinet.ams.org/mathscinet-getitem?mr=1800704 · Zbl 0982.16028
[2] Aguiar, M., On the associative analog of Lie bialgebras, J. Algebra, 244, 492-532 (2001) · Zbl 0991.16033 · doi:10.1006/jabr.2001.8877
[3] Aguiar, M., Hopf, Infinitesimal, algebras and the cd-index of polytopes. Geometric combinatorics (San Francisco, CA, Davis, CA: Discrete Comput. Geom. 27(2002), 3-28 (2000) · Zbl 1011.05061
[4] Aguiar, M.: Infinitesimal bialgebras, pre-Lie and dendriform algebras. Hopf algebras, 1-33, Lecture Notes in Pure and Appl. Math. 237, Dekker, New York (2004) · Zbl 1059.16027
[5] Bai, C.M.: Introduction to pre-Lie algebras. http://einspem.upm.edu.my/equals8/CSS/pre-Lie.pdf
[6] Bokut, LA; Chen, Y.; Qiu, J., Gröbner-Shirshov bases for associative algebras with multiple operators and free Rota-Baxter algebras, J. Pure Appl. Algebra, 214, 89-110 (2010) · Zbl 1213.16014 · doi:10.1016/j.jpaa.2009.05.005
[7] Brouder, C.; Frabetti, A.; Menous, F., Combinatorial Hopf algebras from renormalization, J. Algebraic Combin., 32, 557-578 (2010) · Zbl 1211.81085 · doi:10.1007/s10801-010-0227-7
[8] Bruned, Y.; Hairer, M.; Zambotti, L., Algebraic renormalisation of regularity structures, Invent. Math., 215, 1039-1156 (2019) · Zbl 1481.16038 · doi:10.1007/s00222-018-0841-x
[9] Connes, A.; Kreimer, D., Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem, Comm. Math. Phys., 210, 249-273 (2000) · Zbl 1032.81026 · doi:10.1007/s002200050779
[10] Connes, A.; Kreimer, D., Hopf algebras, renormalization and non-commutative geometry, Comm. Math. Phys., 199, 203-242 (1998) · Zbl 0932.16038 · doi:10.1007/s002200050499
[11] Drinfeld, V.G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians, Berkeley, pp. 798-820 (1986) · Zbl 0667.16003
[12] Foissy, L., Finite-dimensional comodules over the Hopf algebra of rooted trees, J. Algebra, 255, 89-120 (2002) · Zbl 1017.16031 · doi:10.1016/S0021-8693(02)00110-2
[13] Foissy, L.: Introduction to Hopf algebra of rooted trees. http://loic.foissy.free.fr/pageperso/p11.pdf · Zbl 1017.16031
[14] Foissy, L.: Les algèbres de Hopf des arbres enracinés décorés. I. (French) [Hopf algebras of decorated rooted trees. I] Bull. Sci. Math. 126, 193-239 (2002) · Zbl 1013.16026
[15] Foissy, L.: Les algèbres de Hopf des arbres enracinés décorés. II. (French) [Hopf algebras of decorated rooted trees. II] Bull. Sci. Math. 126, 249-288 (2002) · Zbl 1013.16027
[16] Foissy, L., The infinitesimal Hopf algebra and the poset of planar forests, J. Algebraic Combin., 30, 277-309 (2009) · Zbl 1192.16033 · doi:10.1007/s10801-008-0163-y
[17] Foissy, L., The infinitesimal Hopf algebra and the operads of planar forests, Int. Math. Res. Not. IMRN, 3, 395-435 (2010) · Zbl 1226.18012
[18] Foissy, L.: Algebraic structures on typed decorated rooted trees, arXiv:1811.07572 · Zbl 1234.16024
[19] Gerstenhaber, M., The cohomology structure of an associative ring, Ann. of Math. (2), 78, 267-288 (1963) · Zbl 0131.27302 · doi:10.2307/1970343
[20] Gao, X.; Guo, L., Rota’s classification problem, rewriting systems and Gröbner-Shirshov bases, ‘J. Algebra, 470, 219-253 (2017) · Zbl 1423.16047 · doi:10.1016/j.jalgebra.2016.09.006
[21] Gao, X., Zhang, Y.: Planar rooted forests and weighted infinitesimal Hopf algebras: an operated algebra approach, arXiv:1810.10790
[22] Grossman, R.; Larson, RG, Hopf-algebraic structure of families of trees, J. Algebra, 126, 184-210 (1989) · Zbl 0717.16029 · doi:10.1016/0021-8693(89)90328-1
[23] Guo, L., An Introduction to Rota-Baxter Algebra (2012), Somerville: International Press, Somerville · Zbl 1271.16001
[24] Guo, L., Operated semigroups, Motzkin paths and rooted trees, J. Algebraic Combin., 29, 35-62 (2009) · Zbl 1227.05271 · doi:10.1007/s10801-007-0119-7
[25] Guo, L., Paycha, S., Zhang, B.: Renormalization by Birkhoff-Hopf factorization and by generalized evaluators: a case study. In: Noncommutative Geometry, Arithmetic, and Related Topics, pp. 183-211. Johns Hopkins University Press (2011) · Zbl 1253.81118
[26] Guo, L.; Sit, W.; Zhang, R., Differential type operators and Gröbner-Shirshov bases, J. Symb. Comput., 52, 97-123 (2013) · Zbl 1290.16021 · doi:10.1016/j.jsc.2012.05.014
[27] Higgins, PJ, Groups with multiple operators, Proc. Lond. Math. Soc., 6, 366-416 (1956) · Zbl 0073.01704 · doi:10.1112/plms/s3-6.3.366
[28] Hoffman, ME, Combinatorics of rooted trees and Hopf algebras, Trans. Am. Math. Soc., 355, 3795-3811 (2003) · Zbl 1048.16023 · doi:10.1090/S0002-9947-03-03317-8
[29] Holtkamp, R., Comparison of Hopf algebras on trees, Arch. Math. (Basel), 80, 368-383 (2003) · Zbl 1056.16030 · doi:10.1007/s00013-003-0796-y
[30] Joni, S.; Rota, G-C, Coalgebras and bialgebras in combinatorics, Stud. Appl. Math., 61, 93-139 (1979) · Zbl 0471.05020 · doi:10.1002/sapm197961293
[31] Kreimer, D., On the Hopf algebra structure of perturbative quantum field theories, Adv. Theor. Math. Phys., 2, 303-334 (1998) · Zbl 1041.81087 · doi:10.4310/ATMP.1998.v2.n2.a4
[32] Kreimer, D., Panzer, E.: Renormalization and Mellin transforms. In: Computer algebra in quantum field theory, pp. 195-223. Texts Monogr. Symbol. Comput, Springer, Vienna (2013) · Zbl 1308.81137
[33] Kurosh, AG, Free sums of multiple operator algebras, Sib. Math. J., 1, 62-70 (1960) · Zbl 0096.25304
[34] Loday, J.-L.: Cyclic homology. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 301, pp. xviii+454. Springer-Verlag, Berlin (1992). Appendix E by María O. Ronco · Zbl 0780.18009
[35] Loday, J-L; Ronco, MO, Hopf algebra of the planar binary trees, Adv. Math., 139, 293-309 (1998) · Zbl 0926.16032 · doi:10.1006/aima.1998.1759
[36] Loday, J-L; Ronco, MO, On the structure of cofree Hopf algebras, J. Reine Angew. Math., 592, 123-155 (2006) · Zbl 1096.16019
[37] Manchon, D.: A short survey on pre-Lie algebras. Noncommutative geometry and physics: renormalisation, motives, index theory, pp. 89-102, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich (2011) · Zbl 1278.17001
[38] Moerdijk, I., On the Connes-Kreimer construction of Hopf algebras, Contemp. Math., 271, 311-321 (2001) · Zbl 0987.16032 · doi:10.1090/conm/271/04360
[39] Ogievetsky, O.; Popov, T., \(R\)-matrices in rime, Adv. Theor. Math. Phys., 14, 439-505 (2010) · Zbl 1208.81118 · doi:10.4310/ATMP.2010.v14.n2.a3
[40] Peng, X.S., Zhang, Y., Gao, X., Luo, Y.F.: Left counital Hopf algebras on bi-decorated planar rooted forests and Rota-Baxter systems, accepted by Bull. Belg. Math. Soc.-Simon Stevin (2019) · Zbl 1458.16042
[41] Stanley, R.P.: Enumerative combinatorics. Vol. 1. Number 49 in Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (1997)
[42] Vinberg, EB, The theory of homogeneous convex cones, Transl. Moscow Math. Soc., 2, 303-358 (1963) · Zbl 0138.43301
[43] Zhang, T.J., Gao, X., Guo, L.: Hopf algebras of rooted forests, cocyles, and free Rota-Baxter algebras. J. Math. Phys. 57 (2016) · Zbl 1351.81076
[44] Zhang, Y., Chen, D., Gao, X., Luo, Y.F: Weighted infinitesimal unitary bialgebras on rooted forests and weighted cocycles. Pacific J. Math. 302, 741-766 (2019) · Zbl 1435.16005
[45] Zhang, Y., Gao, X., Luo, Y.F.: Weighted infinitesimal unitary bialgebras on free monoid algebras (submitted) (2019)
[46] Zhang, Y., Gao, X., Zheng, J.W.: Weighted infinitesimal unitary bialgebras on matrix algebras and weighted associative Yang-Baxter equations, arXiv:1811.00842
[47] Zhang, Y.; Zheng, JW; Luo, YF, Weighted infinitesimal unitary bialgebras, pre-Lie, matrix algebras and polynomial algebras, Comm. Algebra, 47, 5164-5181 (2019) · Zbl 1436.16043 · doi:10.1080/00927872.2019.1612422
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.