×

New exact solutions of the fractional complex Ginzburg-Landau equation. (English) Zbl 1512.35620

Summary: In this paper, we apply the complete discrimination system method to establish the exact solutions of the fractional complex Ginzburg-Landau equation in the sense of the conformable fractional derivative. Firstly, by the fractional traveling wave transformation, time-space fractional complex Ginzburg-Landau equation is reduced to an ordinary differential equation. Secondly, some new exact solutions are obtained by the complete discrimination system method of the three-order polynomial; these solutions include solitary wave solutions, rational function solutions, triangle function solutions, and Jacobian elliptic function solutions. Finally, two numerical simulations are imitated to explain the propagation of optical pulses in optic fibers. At the same time, the comparison between the previous results and our results are also given.

MSC:

35R11 Fractional partial differential equations
35C07 Traveling wave solutions
Full Text: DOI

References:

[1] Ghanabari, B.; Baleanu, D., A novel technique to construct exact solutions for nonlinear partial differential equations, The European Physical Journal Plus, 134 (2019) · doi:10.1140/epjp/i2019-13037-9
[2] Chu, Y.-M.; Shallal, M. A.; Mehdi Mirhosseini-Alizamini, S.; Rezazadeh, H.; Javeed, S.; Baleanu, D., Application of modified extended Tanh technique for solving complex Ginzburg-Landau equation considering Kerr law nonlinearity, Computers, Materials & Continua, 66, 2, 1369-1378 (2020) · doi:10.32604/cmc.2020.012611
[3] Tuan, N. H.; Ngoc, T. B.; Baleanu, D.; O’Regan, D., On well-posedness of the sub-diffusion equation with conformable derivative model, Communications in Nonlinear Science and Numerical Simulation, 89 (2020) · Zbl 1450.35276 · doi:10.1016/j.cnsns.2020.105332
[4] Zhu, W. J.; Xia, Y. H.; Bai, Y. Z., Traveling wave solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity, Applied Mathematics and Computation, 382 (2020) · Zbl 1508.35171 · doi:10.1016/j.amc.2020.125342
[5] Osman, M. S.; Ghanbari, B.; Machado, J. A. T., New complex waves in nonlinear optics based on the complex Ginzburg-Landau equation with Kerr law nonlinearity, European Physical Journal Plus, 134, 1, 20-30 (2019) · doi:10.1140/epjp/i2019-12442-4
[6] Liu, C. S., Exact traveling wave solutions for a kind of generalized ginzburg-landau equation, Communications in Theoretical Physics, 43, 787-790 (2005) · doi:10.1088/0253-6102/43/5/004
[7] Biswas, A.; Alqahtani, R. T., Optical soliton perturbation with complex Ginzburg-Landau equation by semi-inverse variational principle, Optik, 147, 77-81 (2017) · doi:10.1016/j.ijleo.2017.08.018
[8] Gao, W.; Baskonus, H. M.; Shi, L., New investigation of bats-hosts-reservoir-people coronavirus model and application to 2019-nCoV system, Advance in Difference Equations, 2020 (2020) · Zbl 1485.92129 · doi:10.1186/s13662-020-02831-6
[9] Baskonus, H. M., Complex surfaces to the fractional (2 + 1)-dimensional boussinesq dynamical model with the local M-derivative, The European Physical Journal Plus, 134 (2019) · doi:10.1140/epjp/i2019-12680-4
[10] İlhan, E.; Kıymaz, İ. O., A generalization of truncated M-fractional derivative and applications to fractional differential equations, Applied Mathematics and Nonlinear Sciences, 5, 1, 171-188 (2020) · Zbl 07664125 · doi:10.2478/amns.2020.1.00016
[11] Valliammal, N.; Ravichandran, C.; Hammouch, Z.; Baskonus, H. M., A new investigation on fractional-ordered neutral differential systems with state-dependent delay, International Journal of Nonlinear Sciences and Numerical Simulation, 20, 7-8, 803C809 (2019) · Zbl 07168390 · doi:10.1515/ijnsns-2018-0362
[12] Zhang, Y.; Cattani, C.; Yang, X. J., Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal domains, Entropy, 17, 10, 6753-6764 (2015) · doi:10.3390/e17106753
[13] Gao, W.; Yel, G.; Mehmet Baskonus, H.; Cattani, C., Complex solitons in the conformable (2 + 1)-dimensional ablowitz-kaup-newell-segur equation, Aims Mathematics, 5, 1, 507 (2020) · Zbl 1484.35377 · doi:10.3934/math.2020034
[14] Yokuş, A.; Gülbahar, S., Numerical solutions with linearization techniques of the fractional Harry Dym equation, Applied Mathematics and Nonlinear Sciences, 4, 1, 35-42 (2019) · Zbl 1506.65133 · doi:10.2478/AMNS.2019.1.00004
[15] Danane, J.; Allali, K.; Hammouch, Z., Mathematical analysis of a fractional differential model of HBV infection with antibody immune response, Chaos, Solitons & Fractals, 136 (2020) · Zbl 1489.92145 · doi:10.1016/j.chaos.2020.109787
[16] Arshed, S.; Biswas, A.; Mallawi, F., Optical solitons with complex Ginzburg-Landau equation having three nonlinear forms, Physics Letters A, 383, 36 (2019) · Zbl 1479.35831 · doi:10.1016/j.physleta.2019.126026
[17] Biswas, A.; Yildirim, Y.; Yasar, E., Optical soliton perturbation with complex Ginzburg-Landau equation using trial solution approach, Optik, 160, 44-60 (2018) · doi:10.1016/j.ijleo.2018.01.102
[18] Das, A.; Biswas, A.; Ekici, M.; Zhou, Q.; Alshomrani, A. S.; Belic, M. R., Optical solitons with complex Ginzburg-Landau equation for two nonlinear forms using F-expansion, Chinese Journal of Physics, 61, 255-261 (2019) · Zbl 07824988 · doi:10.1016/j.cjph.2019.08.009
[19] Inc, M.; Aliyu, A. I.; Yusuf, A.; Baleanu, D., Optical solitons for complex Ginzburg-Landau model in nonlinear optics, Optik, 158, 368-375 (2018) · doi:10.1016/j.ijleo.2017.12.076
[20] Rezazadeh, H., New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity, Optik, 167, 218-227 (2018) · doi:10.1016/j.ijleo.2018.04.026
[21] Li, J.; Shi, J., Bifurcations and exact solutions of ac-driven complex Ginzburg-Landau equation, Applied Mathematics and Computation, 221, 102-110 (2013) · Zbl 1329.35300 · doi:10.1016/j.amc.2013.05.067
[22] Li, Z.; Han, T. Y., Bifurcation and exact solutions for the (2 + 1)-dimensional conformable time-fractional Zoomeron equation, Advance in Difference Equations, 2020 (2020) · Zbl 1487.35413 · doi:10.1186/s13662-020-03119-5
[23] Li, Z.; Han, T. Y.; Huang, C., Bifurcation and new exact traveling wave solutions for time-space fractional Phi-4 equation, AIP Advance, 10 (2020) · doi:10.1063/5.0029159
[24] Sulaiman, T. A.; Baskonus, H. M.; Bulut, A., Optical solitons and other solutions to the conformable space-time fractional complex Ginzburg-Landau equation under Kerr law nonlinearity, Pramana: Journal of Physics, 91, 4 (2018) · doi:10.1007/s12043-018-1635-9
[25] Abdou, M. A.; Soliman, A. A.; Biswas, A.; Ekici, M.; Zhou, Q.; Moshokoa, S. P., Dark-singular combo optical solitons with fractional complex Ginzburg-Landau equation, Optik, 171, 463-467 (2018) · doi:10.1016/j.ijleo.2018.06.076
[26] Arshed, S., Soliton solutions of fractional complex Ginzburg-Landau equation with Kerr law and non-Kerr law media, Optik, 160, 322-332 (2018) · doi:10.1016/j.ijleo.2018.02.022
[27] Ghanbari, B.; Gò.an-Aguilar, J. F., Optical soliton solutions of the Ginzburg-Landau equation with conformable derivative and Kerr law nonlinearity, Revista Mexicana de Fisica, 65, 73-81 (2019) · doi:10.31349/RevMexFis.65.73
[28] Lu, P. H.; Wang, B. H.; Dai, C. Q., Fractional traveling wave solutions of the (2 + 1)- dimensional fractional complex Ginzburg-Landau equation via two methods, Mathematical Methods in the Applied Sciences, 43, 1-9 (2020) · Zbl 1453.35041 · doi:10.1002/mma.6511
[29] Liu, C.-s., Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations, Computer Physics Communications, 181, 2, 317-324 (2010) · Zbl 1205.35262 · doi:10.1016/j.cpc.2009.10.006
[30] Liu, C. S., Classification of all single travelling wave solutions to Calogero-Degasperis-Focas equation, Communications in Theoretical Physics, 48, 4, 601-604 (2007) · Zbl 1267.35065 · doi:10.1088/0253-6102/48/4/004
[31] Cao, D.; Li, C.; He, J., Exact solutions to the space-time fraction Whitham-Broer-Kaup equation, Modern Physics Letters B, 34, 16 (2020) · doi:10.1142/s021798492050178x
[32] Kai, Y.; Zheng, B. L.; Xu, W. Y., Exact single traveling wave solutions to generalized (2 + 1)-dimensional Gardner equation with variable coefficients, Results in Physics, 15 (2019) · doi:10.1016/j.rinp.2019.102527
[33] Guan, B.; Li, S. B.; Chen, S. Q.; Zhang, L. G.; Wang, C. H., The classification of single traveling wave solutions to coupled time-fractional KdV-Drinfel’d-Sokolov-Wilson system, Results in Physics, 13 (2019) · doi:10.1016/j.rinp.2019.102291
[34] Liu, Y.; Wang, X., The construction of solutions to Zakharov-Kuznetsov equation with fractional power nonlinear terms, Advances in Difference Equations, 2019 (2019) · Zbl 1459.35327 · doi:10.1186/s13662-019-2063-y
[35] Li, Z.; Han, T. Y.; Huang, C., Exact single traveling wave solutions for generalized fractional gardner equations, Mathematical Problems in Engineering, 2020 (2020) · Zbl 1459.35072 · doi:10.1155/2020/8842496
[36] Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M., A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, 65-70 (2014) · Zbl 1297.26013 · doi:10.1016/j.cam.2014.01.002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.