×

Existence uniqueness of mild solutions for \(\psi \)-Caputo fractional stochastic evolution equations driven by fBm. (English) Zbl 1504.35629

Summary: In this paper, we investigate the existence uniqueness of mild solutions for a class of \(\psi \)-Caputo fractional stochastic evolution equations with varying-time delay driven by fBm, which seems to be the first theoretical result of the \(\psi \)-Caputo fractional stochastic evolution equations. Alternative conditions to guarantee the existence uniqueness of mild solutions are obtained using fractional calculus, stochastic analysis, fixed point technique, and noncompact measure method. Moreover, an example is presented to illustrate the effectiveness and feasibility of the obtained abstract results.

MSC:

35R11 Fractional partial differential equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
26A33 Fractional derivatives and integrals
60G22 Fractional processes, including fractional Brownian motion
47N20 Applications of operator theory to differential and integral equations

References:

[1] Agrawal, O. P., Some generalized fractional calculus operators and their applications in integral equations, Fract. Calc. Appl. Anal., 15, 4, 700-711 (2017) · Zbl 1312.26010 · doi:10.2478/s13540-012-0047-7
[2] Almeida, R., A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44, 1, 460-481 (2017) · Zbl 1465.26005 · doi:10.1016/j.cnsns.2016.09.006
[3] Byszewski, L.; Lakshmikantham, V., Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space, Appl. Anal., 40, 1, 11-19 (1991) · Zbl 0694.34001 · doi:10.1080/00036819008839989
[4] Chang, S. J.; Choi, J. G., Parts formulas involving the Fourier-Feynman transform associated with Gaussian paths on Wiener space, Banach J. Math. Anal., 14, 2, 503-523 (2020) · Zbl 1453.46042 · doi:10.1007/s43037-019-00005-5
[5] Chen, G.; Gaans, O.; Lunel, S., Existence and exponential stability of a class of impulsive neutral stochastic partial differential equations with delays and Poisson jumps, Stat. Probab. Lett., 141, 1, 7-18 (2018) · Zbl 1395.60069 · doi:10.1016/j.spl.2018.05.017
[6] Chen, P. Y.; Li, Y. X.; Zhang, X. P., Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families, Discrete Contin. Dyn. Syst., Ser. B, 26, 3, 1531-1547 (2021) · Zbl 1469.34082
[7] Chen, P. Y.; Zhang, X. P., Non-autonomous stochastic evolution equations of parabolic type with nonlocal initial conditions, Discrete Contin. Dyn. Syst., Ser. B, 26, 9, 4681-4695 (2021) · Zbl 1471.34119
[8] Chen, P. Y.; Zhang, X. P.; Li, Y. X., Study on fractional non-autonomous evolution equations with delay, Comput. Math. Appl., 73, 5, 794-803 (2017) · Zbl 1375.34115 · doi:10.1016/j.camwa.2017.01.009
[9] Chen, P. Y.; Zhang, X. P.; Li, Y. X., A blowup alternative result for fractional nonautonomous evolution equation of Volterra type, Commun. Pure Appl. Anal., 17, 5, 1975-1992 (2018) · Zbl 1397.35331 · doi:10.3934/cpaa.2018094
[10] Chen, P. Y.; Zhang, X. P.; Li, Y. X., Existence and approximate controllability of fractional evolution equations with nonlocal conditions via resolvent operator, Fract. Calc. Appl. Anal., 23, 1, 268-291 (2020) · Zbl 1441.34006 · doi:10.1515/fca-2020-0011
[11] Chen, P. Y.; Zhang, X. P.; Li, Y. X., Approximate controllability of non-autonomous evolution system with nonlocal conditions, J. Dyn. Control Syst., 26, 1, 1-16 (2020) · Zbl 1439.34065 · doi:10.1007/s10883-018-9423-x
[12] Chen, P. Y.; Zhang, X. P.; Li, Y. X., Cauchy problem for fractional non-autonomous evolution equations, Banach J. Math. Anal., 14, 2, 559-584 (2020) · Zbl 1452.35236 · doi:10.1007/s43037-019-00008-2
[13] Deng, S. F.; Shu, X. B.; Mao, J. Z., Existence and exponential stability for impulsive neutral stochastic functional differential equations driven by fBm with noncompact semigroup via Mönch fixed point, J. Math. Anal. Appl., 467, 1, 398-420 (2018) · Zbl 1405.60075 · doi:10.1016/j.jmaa.2018.07.002
[14] Gao, D. D.; Li, J. L., Existence and mean-square exponential stability of mild solutions for impulsive stochastic partial differential equations with noncompact semigroup, J. Math. Anal. Appl., 484, 1, 1-16 (2020) · doi:10.1016/S0022-247X(02)00414-6
[15] Gao, D.D., Li, J.L.: Existence results for impulsive delayed neutral stochastic functional differential equations with noncompact semigroup. Stochastics. doi:10.1080/17442508.2021.1873340 · Zbl 1506.34104
[16] Hilfer, R., Applications of Fractional Calculus in Physics (2000), Singapore: World Scientific, Singapore · Zbl 0998.26002 · doi:10.1142/3779
[17] Jarad, F.; Abdeljawad, T., Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst., Ser. S, 13, 3, 709-722 (2019) · Zbl 1444.44002
[18] Kiryakova, V., Generalized Fractional Calculus and Applications (1994), New York: Wiley, New York · Zbl 0882.26003
[19] Lakhel, E.; McKibben, M. A., Existence of solutions for fractional neutral functional differential equations driven by fBm with infinite delay, Stochastics, 90, 3, 313-329 (2018) · Zbl 1498.60224 · doi:10.1080/17442508.2017.1346657
[20] Li, K. X., Stochastic delay fractional evolution equations driven by fractional Brownian motion, Math. Methods Appl. Sci., 38, 8, 1582-1591 (2015) · Zbl 1356.60103 · doi:10.1002/mma.3169
[21] Li, Y. J.; Wang, Y. J., The existence and asymptotic behavior of solutions to fractional stochastic evolution equations with infinite delay, J. Differ. Equ., 266, 6, 3514-3558 (2019) · Zbl 1406.35469 · doi:10.1016/j.jde.2018.09.009
[22] Liang, T. T.; Wang, Y. J., Sub-critical and critical stochastic quasi-geostrophic equations with infinite delay, Discrete Contin. Dyn. Syst., Ser. B, 26, 9, 4697-4726 (2021) · Zbl 1471.35274
[23] Nguyen, T. D., Neutral stochastic differential equations driven by a fractional Brownian motion with impulsive effects and varying-time delays, J. Korean Stat. Soc., 43, 4, 599-608 (2014) · Zbl 1304.60074 · doi:10.1016/j.jkss.2014.02.003
[24] Podlubny, I., Fractional Differential Equations (1999), San Diego: Academic Press, San Diego · Zbl 0924.34008
[25] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives: Theory and Applications (1993), Longhorne: Gordon & Breach, Longhorne · Zbl 0818.26003
[26] Suechoei, A.; Ngiamsunthorn, P. S., Existence uniqueness and stability of mild solutions for semilinear ψ-Caputo fractional evolution equations, Adv. Differ. Equ., 114, 1, 1-28 (2020) · Zbl 1482.34035
[27] Wang, R. N.; Chen, D. H.; Xiao, T. J., Abstract fractional Cauchy problems with almost sectorial operators, J. Differ. Equ., 252, 1, 202-235 (2012) · Zbl 1238.34015 · doi:10.1016/j.jde.2011.08.048
[28] Yan, Z. M.; Jia, X. M., Optimal solutions of fractional nonlinear impulsive neutral stochastic functional integro-differential equations, Numer. Funct. Anal. Optim., 40, 14, 1593-1643 (2019) · Zbl 1425.34092 · doi:10.1080/01630563.2018.1501060
[29] Yang, M.; Alsaedi, A.; Ahmad, B.; Zhou, Y., Attractivity for Hilfer fractional stochastic evolution equations, Adv. Differ. Equ., 130, 1, 1-22 (2020) · Zbl 1482.34039 · doi:10.1186/s13662-014-0331-4
[30] Yang, M.; Gu, H. B., Riemann-Liouville fractional stochastic evolution equations driven by both Wiener process and fractional Brownian motion, J. Inequal. Appl., 8, 1, 1-19 (2021) · Zbl 1504.35630
[31] Yang, S.; Li, Y. R., Dynamics and invariant measures of multi-stochastic sine-Gordon lattices with random viscosity and nonlinear noise, J. Math. Phys., 62, 5 (2021) · Zbl 1465.35428 · doi:10.1063/5.0037929
[32] Zhang, X. P.; Chen, P. Y.; Abdelmonem, A., Mild solution of stochastic partial differential equation with nonlocal conditions and noncompact semigroups, Math. Slovaca, 69, 1, 111-124 (2019) · Zbl 1496.60074 · doi:10.1515/ms-2017-0207
[33] Zhang, X. P.; Chen, P. Y.; Abdelmonem, A.; Li, Y. X., Fractional stochastic evolution equations with nonlocal initial conditions and noncompact semigroups, Stochastics, 90, 7, 1005-1022 (2018) · Zbl 1498.60273 · doi:10.1080/17442508.2018.1466885
[34] Zhou, Y., Basic Theory of Fractional Differential Equations (2014), Singapore: World Scientific, Singapore · Zbl 1336.34001 · doi:10.1142/9069
[35] Zhou, Y.; Jiao, F., Existence of mild solutions for fractional neutral evolution equations, Comput. Math. Appl., 59, 3, 1063-1077 (2010) · Zbl 1189.34154 · doi:10.1016/j.camwa.2009.06.026
[36] Zou, G. A., Stochastic Navier-Stokes equations with Caputo derivative driven by fractional noises, J. Math. Anal. Appl., 461, 1, 595-609 (2018) · Zbl 1390.60252 · doi:10.1016/j.jmaa.2018.01.027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.