×

Weighted Lindley frailty model: estimation and application to lung cancer data. (English) Zbl 07469149

Summary: In this paper, we propose a novel frailty model for modeling unobserved heterogeneity present in survival data. Our model is derived by using a weighted Lindley distribution as the frailty distribution. The respective frailty distribution has a simple Laplace transform function which is useful to obtain marginal survival and hazard functions. We assume hazard functions of the Weibull and Gompertz distributions as the baseline hazard functions. A classical inference procedure based on the maximum likelihood method is presented. Extensive simulation studies are further performed to verify the behavior of maximum likelihood estimators under different proportions of right-censoring and to assess the performance of the likelihood ratio test to detect unobserved heterogeneity in different sample sizes. Finally, to demonstrate the applicability of the proposed model, we use it to analyze a medical dataset from a population-based study of incident cases of lung cancer diagnosed in the state of São Paulo, Brazil.

MSC:

62Nxx Survival analysis and censored data
62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI

References:

[1] Aalen, OO, Heterogeneity in survival analysis, Stat Med, 7, 11, 1121-1137 (1988)
[2] Ali, S., On the bayesian estimation of the weighted lindley distribution, J Stat Comput Simul, 85, 5, 855-880 (2015) · Zbl 1457.62303
[3] Almeida, MP; Paixão, RS; Ramos, PL; Tomazella, V.; Louzada, F.; Ehlers, RS, Bayesian non-parametric frailty model for dependent competing risks in a repairable systems framework, Reliab Eng Syst Saf, 204, 107145 (2020)
[4] Andrade, CTd; Magedanz, AMPCB; Escobosa, DM; Tomaz, WM; Santinho, CS; Lopes, TO; Lombardo, V., The importance of a database in the management of healthcare services, Einstein (São Paulo), 10, 360-365 (2012)
[5] Balakrishnan, N.; Peng, Y., Generalized gamma frailty model, Stat Med, 25, 16, 2797-2816 (2006)
[6] Barker, P.; Henderson, R., Small sample bias in the gamma frailty model for univariate survival, Lifetime Data Anal, 11, 2, 265-284 (2005) · Zbl 1080.62069
[7] Böhnstedt M, Gampe J, Putter H(2021) Information measures and design issues in the study of mortality deceleration: findings for the gamma-gompertz model. Lifetime Data Anal 1-24 · Zbl 07447449
[8] Bretagnolle J, Huber-Carol C(1988) Effects of omitting covariates in cox’s model for survival data. Scand J Stat 125-138 · Zbl 0666.62030
[9] Calsavara, VF; Milani, EA; Bertolli, E.; Tomazella, V., Long-term frailty modeling using a non-proportional hazards model: Application with a melanoma dataset, Stat Methods Med Res, 29, 8, 2100-2118 (2020)
[10] Calsavara, VF; Rodrigues, AS; Rocha, R.; Louzada, F.; Tomazella, V.; Souza, AC; Costa, RA; Francisco, RP, Zero-adjusted defective regression models for modeling lifetime data, J Appl Stat, 46, 13, 2434-2459 (2019) · Zbl 1516.62177
[11] Calsavara, VF; Rodrigues, AS; Rocha, R.; Tomazella, V.; Louzada, F., Defective regression models for cure rate modeling with interval-censored data, Biom J, 61, 841-859 (2019) · Zbl 1429.62503
[12] Clayton, DG, A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika, 65, 1, 141-151 (1978) · Zbl 0394.92021
[13] Cox, DR, Regression models and life-tables, J Roy Stat Soc: Ser B (Methodol), 34, 2, 187-202 (1972) · Zbl 0243.62041
[14] Cox, DR; Snell, EJ, A general definition of residuals, J Roy Stat Soc: Ser B (Methodol), 30, 2, 248-265 (1968) · Zbl 0164.48903
[15] Duchateau, L.; Janssen, P., The frailty model (2007), Berlin: Springer Science & Business Media, Berlin · Zbl 1210.62153
[16] Elbers, C.; Ridder, G., True and spurious duration dependence: The identifiability of the proportional hazard model, Rev Econ Stud, 49, 3, 403-409 (1982) · Zbl 0512.62113
[17] Ghitany, M.; Alqallaf, F.; Al-Mutairi, DK; Husain, H., A two-parameter weighted lindley distribution and its applications to survival data, Math Comput Simul, 81, 6, 1190-1201 (2011) · Zbl 1208.62021
[18] Henderson, R.; Oman, P., Effect of frailty on marginal regression estimates in survival analysis, J Roy Stat Soc Ser B (Stat Methodol), 61, 2, 367-379 (1999) · Zbl 0913.62097
[19] Henningsen, A.; Toomet, O., maxlik: A package for maximum likelihood estimation in r, Comput Stat, 26, 3, 443-458 (2011) · Zbl 1304.65039
[20] Horowitz, JL, Semiparametric estimation of a proportional hazard model with unobserved heterogeneity, Econometrica, 67, 5, 1001-1028 (1999) · Zbl 1056.62547
[21] Hougaard, P., Survival models for heterogeneous populations derived from stable distributions, Biometrika, 73, 2, 387-396 (1986) · Zbl 0603.62015
[22] Hougaard, P., Frailty models for survival data, Lifetime Data Anal, 1, 3, 255-273 (1995)
[23] Hougaard, P., Analysis of multivariate survival data (2012), Berlin: Springer Science & Business Media, Berlin · Zbl 0962.62096
[24] Ibrahim, J.; Chen, M.; Sinha, D., Bayesian survival analysis springer series in statistics, 978-981 (2001), New York: Springer, New York · Zbl 0978.62091
[25] Kass, RE; Raftery, AE, Bayes factors, J Am Stat Assoc, 90, 430, 773-795 (1995) · Zbl 0846.62028
[26] Keiding, N.; Andersen, PK; Klein, JP, The role of frailty models and accelerated failure time models in describing heterogeneity due to omitted covariates, Stat Med, 16, 2, 215-224 (1997)
[27] Klein JP (1992)Semiparametric estimation of random effects using the cox model based on the em algorithm. Biometrics 795-806 (1992)
[28] Klein, JP; Moeschberger, ML, Survival analysis: techniques for censored and truncated data (2006), Berlin: Springer Science & Business Media, Berlin · Zbl 1011.62106
[29] Lawless, JF, Statistical models and methods for lifetime data (2011), New York: John Wiley & Sons, New York · Zbl 0541.62081
[30] Leão, J.; Leiva, V.; Saulo, H.; Tomazella, V., Birnbaum-saunders frailty regression models: diagnostics and application to medical data, Biom J, 59, 2, 291-314 (2017) · Zbl 1367.62293
[31] Lehmann, EL, Elements of large-sample theory (2004), Berlin: Springer Science & Business Media, Berlin
[32] Lehmann, EL; Casella, G., Theory of point estimation (2006), Berlin: Springer Science & Business Media, Berlin · Zbl 0916.62017
[33] Lindley DV(1958) Fiducial distributions and bayes’ theorem. J Roy Stat Soc Ser B (Methodological) 102-107 (1958) · Zbl 0085.35503
[34] Louzada, F.; Cuminato, JA; Rodriguez, OMH; Tomazella, VL; Milani, EA; Ferreira, PH; Ramos, PL; Bochio, G.; Perissini, IC; Junior, OAG, Incorporation of frailties into a non-proportional hazard regression model and its diagnostics for reliability modeling of downhole safety valves, IEEE Access, 8, 219757-219774 (2020)
[35] Maller, R.; Zhou, X., Survival ananlysis with long-term survivors (1996), New York: John Wiley & Sons, New York · Zbl 1151.62350
[36] Marsaglia, G.; Tsang, WW, A simple method for generating gamma variables, ACM Trans Math Softw (TOMS), 26, 3, 363-372 (2000) · Zbl 1365.65022
[37] Mazucheli, J.; Coelho-Barros, EA; Achcar, JA, An alternative reparametrization for the weighted lindley distribution, Pesquisa Operacional, 36, 2, 345-353 (2016)
[38] Nash JC, Varadhan R, Grothendieck G, Nash MJC, Yes L(2020) Package ‘optimx’
[39] Nielsen GG, Gill RD, Andersen PK, Sørensen TI (1992) A counting process approach to maximum likelihood estimation in frailty models. Scand J Stat 25-43 · Zbl 0747.62093
[40] Nielsen HB, Mortensen SB (2016) ucminf: General-Purpose Unconstrained Non-Linear Optimization (2016). https://CRAN.R-project.org/package=ucminf. R package version 1.1-4
[41] Nocedal J, Wright S (1999) Springer series in operations research. Numer Optim · Zbl 0930.65067
[42] Parner, E., Inference in semiparametric frailty models, Acta Jutlandica, 73, 320-321 (1998)
[43] Pickles, A.; Crouchley, R., A comparison of frailty models for multivariate survival data, Stat Med, 14, 13, 1447-1461 (1995) · Zbl 0832.62091
[44] Core Team R (2020) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2020). https://www.R-project.org/
[45] Robert, C.; Casella, G., Monte Carlo statistical methods (2013), Berlin: Springer Science & Business Media, Berlin · Zbl 1096.62003
[46] Rocha, R.; Nadarajah, S.; Tomazella, V.; Louzada, F., Two new defective distributions based on the Marshall-Olkin extension, Lifetime Data Anal, 22, 216-240 (2016) · Zbl 1356.62020
[47] Sinha, D.; Dey, DK, Semiparametric bayesian analysis of survival data, J Am Stat Assoc, 92, 439, 1195-1212 (1997) · Zbl 1067.62520
[48] Struthers, CA; Kalbfleisch, JD, Misspecified proportional hazard models, Biometrika, 73, 2, 363-369 (1986) · Zbl 0606.62108
[49] Vaupel, JW; Manton, KG; Stallard, E., The impact of heterogeneity in individual frailty on the dynamics of mortality, Demography, 16, 3, 439-454 (1979)
[50] Vaupel JW, Yashin AI (1983) The deviant dynamics of death in heterogeneous populations · Zbl 0508.92017
[51] Venables WN, Ripley BD (2013) Modern applied statistics with S-PLUS. Springer Science & Business Media (2013) · Zbl 0927.62002
[52] Vilca, F.; Santana, L.; Leiva, V.; Balakrishnan, N., Estimation of extreme percentiles in birnbaum-saunders distributions, Comput Stat Data Anal, 55, 4, 1665-1678 (2011) · Zbl 1328.62141
[53] Wienke, A., Frailty models in survival analysis (2010), Boca Raton: CRC Press, Boca Raton
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.