×

Zero-adjusted defective regression models for modeling lifetime data. (English) Zbl 1516.62177

Summary: In this paper, we introduce a defective regression model for survival data modeling with a proportion of early failures or zero-adjusted. Our approach enables us to accommodate three types of units, that is, patients with ‘zero’ survival times (early failures) and those who are susceptible or not susceptible to the event of interest. Defective distributions are obtained from standard distributions by changing the domain of the parameters of the latter in such a way that their survival functions are limited to \(p\in(0,1)\). We consider the Gompertz and inverse Gaussian defective distributions, which allow modeling of data containing a cure fraction. Parameter estimation is performed by maximum likelihood estimation, and Monte Carlo simulation studies are conducted to evaluate the performance of the proposed models. We illustrate the practical relevance of the proposed models on two real data sets. The first is from a study of occlusion of endoscopic stenting in patients with pancreatic cancer performed at A. C. Camargo Cancer Center, and the other is from a study on insulin use in pregnant women diagnosed with gestational diabetes performed at São Paulo University Medical School. Both studies were performed in São Paulo, Brazil.

MSC:

62-XX Statistics

Software:

R; Newdistns
Full Text: DOI

References:

[1] Balka, J.; Desmond, A. F.; McNicholas, P. D., Review and implementation of cure models based on first hitting times for Wiener processes, Lifetime Data Anal., 15, 147-176 (2009) · Zbl 1282.62228 · doi:10.1007/s10985-008-9108-y
[2] Balka, J.; Desmond, A. F.; McNicholas, P. D., Bayesian and likelihood inference for cure rates based on defective inverse Gaussian regression models, J. Appl. Stat., 38, 127-144 (2011) · Zbl 1511.62309 · doi:10.1080/02664760903301127
[3] Barry, S. C.; Welsh, A. H., Generalized additive modelling and zero inflated count data, Ecol. Modell., 157, 179-188 (2002) · doi:10.1016/S0304-3800(02)00194-1
[4] Berkson, J.; Gage, R. P., Survival curve for cancer patients following treatment, J. Am. Stat. Assoc., 47, 501-515 (1952) · doi:10.1080/01621459.1952.10501187
[5] Boag, J. W., Maximum likelihood estimates of the proportion of patients cured by cancer therapy, J. R. Stat. Soc. B, 11, 15-53 (1949) · Zbl 0034.08001
[6] Borges, P.; Rodrigues, J.; Balakrishnan, N., Correlated destructive generalized power series cure rate models and associated inference with an application to a cutaneous melanoma data, Comput. Stat. Data Anal., 56, 1703-1713 (2012) · Zbl 1465.62007 · doi:10.1016/j.csda.2011.10.013
[7] Braekers, R.; Grouwels, Y., A semi-parametric Cox’s regression model for zero-inflated left-censored time to event data, Commun. Stat. Theory Methods, 45, 1969-1988 (2016) · Zbl 1341.62266 · doi:10.1080/03610926.2013.870207
[8] Calsavara, V. F.; Rodrigues, A. S.; Tomazella, V. L.D.; de Castro, M., Frailty models power variance function with cure fraction and latent risk factors negative binomial, Commun. Stat. Theory Methods, 46, 9763-9776 (2017) · Zbl 1380.62249 · doi:10.1080/03610926.2016.1218029
[9] Calsavara, V. F.; Tomazella, V. L.D.; Fogo, J. C., Family generalized modified Weibull for analyzing long-term survival data, Adv. Appl. Stat., 23, 59-76 (2011) · Zbl 06042828
[10] Cancho, V. G.; Bandyopadhyay, D.; Louzada, F.; Yiqi, B., The destructive negative binomial cure rate model with a latent activation scheme, Stat. Methodol., 13, 48-68 (2013) · Zbl 1365.62410 · doi:10.1016/j.stamet.2013.01.006
[11] Cancho, V. G.; Rodrigues, J.; de Castro, M., A flexible model for survival data with a cure rate: A Bayesian approach, J. Appl. Stat., 38, 57-70 (2011) · Zbl 1511.62315 · doi:10.1080/02664760903254052
[12] Cantor, A. B.; Shuster, J. J., Parametric versus non-parametric methods for estimating cure rates based on censored survival data, Stat. Med., 11, 931-937 (1992) · doi:10.1002/sim.4780110710
[13] Chen, M. H.; Ibrahim, J. G.; Sinha, D., A new Bayesian model for survival data with a surviving fraction, J. Am. Stat. Assoc., 94, 909-919 (1999) · Zbl 0996.62019 · doi:10.1080/01621459.1999.10474196
[14] Conceição, K. S.; Andrade, M. G.; Louzada, F., Zero-modified Poisson model: Bayesian approach, influence diagnostics, and an application to a Brazilian leptospirosis notification data, Biom. J., 55, 661-678 (2013) · Zbl 1284.62169 · doi:10.1002/bimj.201100175
[15] Farewell, V. T., The use of mixture models for the analysis of survival data with long-term survivors, Biometrics, 38, 1041-1046 (1982) · doi:10.2307/2529885
[16] Farewell, V. T., Mixture models in survival analysis: Are they worth the risk?, Can. J. Stat., 14, 257-262 (1986) · doi:10.2307/3314804
[17] Gieser, P. W.; Chang, M. N.; Rao, P.; Shuster, J. J.; Pullen, J., Modelling cure rates using the Gompertz model with covariate information, Stat. Med., 17, 831-839 (1998) · doi:10.1002/(SICI)1097-0258(19980430)17:8<831::AID-SIM790>3.0.CO;2-G
[18] Haybittle, J. L., The estimation of the proportion of patients cured after treatment for cancer of the breast, Br. J. Radiol., 32, 725-733 (1959) · doi:10.1259/0007-1285-32-383-725
[19] Ibrahim, J. G.; Chen, M. H.; Sinha, D., Bayesian Survival Analysis (2001), Springer: Springer, New York · Zbl 0978.62091
[20] Kaplan, E. L.; Meier, P., Nonparametric estimation from incomplete observations, J. Am. Stat. Assoc., 53, 457-481 (1958) · Zbl 0089.14801 · doi:10.1080/01621459.1958.10501452
[21] Lambert, D., Zero-inflated Poisson regression, with an application to defects in manufacturing, Technometrics, 34, 1-14 (1992) · Zbl 0850.62756 · doi:10.2307/1269547
[22] Long, D. L.; Preisser, J. S.; Herring, A. H.; Golin, C. E., A marginalized zero-inflated Poisson regression model with overall exposure effects, Stat. Med., 33, 5151-5165 (2014) · doi:10.1002/sim.6293
[23] Lord, D.; Washington, S. P.; Ivan, J. N., Poisson, Poisson-gamma and zero-inflated regression models of motor vehicle crashes: Balancing statistical fit and theory, Accid. Anal. Prev., 37, 35-46 (2005) · doi:10.1016/j.aap.2004.02.004
[24] Louzada, F.; Moreira, F. F.; de Oliveira, M. R., A zero-inflated non default rate regression model for credit scoring data, Commun. Stat. Theory Methods, 47, 3002-3021 (2018) · Zbl 1508.62250 · doi:10.1080/03610926.2017.1346803
[25] Nadarajah, S.; Rocha, R., Newdistns: An R package for new families of distributions, J. Stat. Softw., 69, 1-32 (2016) · doi:10.18637/jss.v069.i10
[26] Ospina, R.; Ferrari, S. L., A general class of zero-or-one inflated beta regression models, Comput. Stat. Data Anal., 56, 1609-1623 (2012) · Zbl 1243.62099 · doi:10.1016/j.csda.2011.10.005
[27] Peng, Y.; Dear, K. B.G., A nonparametric mixture model for cure rate estimation, Biometrics, 56, 237-243 (2000) · Zbl 1060.62651 · doi:10.1111/j.0006-341X.2000.00237.x
[28] R Core Team, R: A Language and Environment for Statistical Computing (2017), R Foundation for Statistical Computing: R Foundation for Statistical Computing, Vienna, Austria
[29] Ribeiro de Oliveira, M. Jr.; Moreira, F.; Louzada, F., The zero-inflated promotion cure rate model applied to financial data on time-to-default, Cogent Econ. Finance, 5 (2017) · doi:10.1080/23322039.2017.1395950
[30] Rocha, R.; Nadarajah, S.; Tomazella, V.; Louzada, F., Two new defective distributions based on the Marshall-Olkin extension, Lifetime Data Anal., 22, 216-240 (2016) · Zbl 1356.62020 · doi:10.1007/s10985-015-9328-x
[31] Rocha, R.; Nadarajah, S.; Tomazella, V.; Louzada, F., A new class of defective models based on the Marshall-Olkin family of distributions for cure rate modeling, Comput. Stat. Data Anal., 107, 48-63 (2017) · Zbl 1466.62184 · doi:10.1016/j.csda.2016.10.001
[32] Rocha, R.; Nadarajah, S.; Tomazella, V.; Louzada, F.; Eudes, A., New defective models based on the Kumaraswamy family of distributions with application to cancer data sets, Stat. Methods Med. Res., 26, 1737-1755 (2017) · doi:10.1177/0962280215587976
[33] Rodrigues, J., Bayesian analysis of zero-inflated distributions, Commun. Stat. Theory Methods, 32, 281-289 (2003) · Zbl 1024.62009 · doi:10.1081/STA-120018186
[34] Rodrigues, J.; Cancho, V. G.; de Castro, M.; Louzada-Neto, F., On the unification of long-term survival models, Stat. Probab. Lett., 79, 753-759 (2009) · Zbl 1349.62485 · doi:10.1016/j.spl.2008.10.029
[35] Rodrigues, J.; de Castro, M.; Balakrishnan, N.; Cancho, V. G., Destructive weighted Poisson cure rate models, Lifetime Data Anal., 17, 333-346 (2011) · Zbl 1230.62141 · doi:10.1007/s10985-010-9189-2
[36] Schrödinger, E., Zur theorie der fall-und steigversuche an teilchen mit brownscher bewegung, Physikalische Zeitschrift, 16, 289-295 (1915)
[37] Scudilio, J.; Calsavara, V. F.; Rocha, R.; Louzada, F.; Tomazella, V.; Rodrigues, A. S., Defective models induced by gamma frailty term for survival data with cured fraction, J. Appl. Stat., 46, 484-507 (2018) · Zbl 1516.62592 · doi:10.1080/02664763.2018.1498464
[38] Souza, A. C.; Costa, R. A.; Paganoti, C. F.; Rodrigues, A. S.; Zugaib, M.; Hadar, E.; Hod, M.; Francisco, R. P., Can we stratify the risk for insulin need in women diagnosed early with gestational diabetes by fasting blood glucose?, J. Matern. Fetal Neonatal Med., 32, 2036-2041 (2018) · doi:10.1080/14767058.2018.1424820
[39] Tweedie, M. C. K., Inverse statistical variates, Nature, 155, 453 (1945) · Zbl 0063.07892 · doi:10.1038/155453a0
[40] Vieira, A.; Hinde, J. P.; Demétrio, C. G., Zero-inflated proportion data models applied to a biological control assay, J. Appl. Stat., 27, 373-389 (2000) · Zbl 0976.62108 · doi:10.1080/02664760021673
[41] Yakovlev, A. Y.; Tsodikov, A. D., Stochastic Models of Tumor Latency and Their Biostatistical Applications (1996), World Scientific: World Scientific, Singapore · Zbl 0919.92024
[42] Yin, G.; Ibrahim, J. G., Cure rate models: A unified approach, Can. J. Stat., 33, 559-570 (2005) · Zbl 1098.62127 · doi:10.1002/cjs.5550330407
[43] Calsavara, V. F.; Rodrigues, A. S.; Rocha, R.; Tomazella, V.; Louzada, F., Defective regression models for cure rate modeling with interval-censored data, Biom. J. (2019) · Zbl 1429.62503 · doi:10.1002/bimj.201800056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.