×

Overall recursive least squares and overall stochastic gradient algorithms and their convergence for feedback nonlinear controlled autoregressive systems. (English) Zbl 1528.93227

Summary: This article deals with the problems of the parameter estimation for feedback nonlinear controlled autoregressive systems (i.e., feedback nonlinear equation-error systems). The bilinear-in-parameter identification model is formulated to describe the feedback nonlinear system. An overall recursive least squares algorithm is developed to handle the difficulty of the bilinear-in-parameter. For the purpose of avoiding the heavy computational burden, an overall stochastic gradient algorithm is deduced and the forgetting factor is introduced to improve the convergence rate. Furthermore, the convergence analysis of the proposed algorithms are established by means of the stochastic process theory. The effectiveness of the proposed algorithms are illustrated by the simulation example.
{© 2022 John Wiley & Sons Ltd.}

MSC:

93E10 Estimation and detection in stochastic control theory
93E24 Least squares and related methods for stochastic control systems
93B52 Feedback control
93C10 Nonlinear systems in control theory

References:

[1] KangZ, JiY, LiuXM. Hierarchical recursive least squares algorithms for Hammerstein nonlinear autoregressive output‐error systems. Int J Adapt Control Signal Process. 2021;35(11):2276‐2295. · Zbl 1543.93319
[2] PanJ, JiangX, WanXK, DingW. A filtering based multi‐innovation extended stochastic gradient algorithm for multivariable control systems. Int J Control Autom Syst. 2017;15(3):1189‐1197.
[3] DingF, MaH, PanJ, YangEF. Hierarchical gradient‐ and least squares‐based iterative algorithms for input nonlinear output‐error systems using the key term separation. J Franklin Inst. 2021;358(9):5113‐5135. · Zbl 1465.93040
[4] XuL. Separable multi‐innovation Newton iterative modeling algorithm for multi‐frequency signals based on the sliding measurement window. Circuits Syst Signal Process. 2022;41(2):805‐830. · Zbl 1509.94036
[5] XuL. Separable Newton recursive estimation method through system responses based on dynamically discrete measurements with increasing data length. Int J Control Autom Syst. 2022;20(2):432‐443.
[6] PanJ, LiW, ZhangHP. Control algorithms of magnetic suspension systems based on the improved double exponential reaching law of sliding mode control. Int J Control Autom Syst. 2018;16(6):2878‐2887.
[7] XiongJX, PanJ, ChenGY. Sliding mode dual‐channel disturbance rejection attitude control for a quadrotor. IEEE Trans Ind Electron. 2022. doi:10.1109/TIE.2021.3137600.
[8] WangYJ, TangSH, GuXB. Parameter estimation for nonlinear Volterra systems by using the multi‐innovation identification theory and tensor decomposition. J Frankl Inst. 2022;359(2):1782‐1802. · Zbl 1481.93022
[9] WangYJ, YangL. An efficient recursive identification algorithm for multilinear systems based on tensor decomposition. Int J Robust Nonlinear Control. 2021;31(11):7920‐7936. · Zbl 1527.93044
[10] PanJ, MaH, ZhangX, et al. Recursive coupled projection algorithms for multivariable output‐error‐like systems with coloured noises. IET Signal Process. 2020;14(7):455‐466.
[11] OyerindeOO. Reweighted regularised variable step size normalised least mean square‐based iterative channel estimation for multicarrier‐interleave division multiple access systems. IET Signal Process. 2016;10(8):947‐954.
[12] OliveiraAM, CostaOLV. An iterative approach for the discrete‐time dynamic control of Markov jump linear systems with partial information. Int J Robust Nonlinear Control. 2020;30(2):495‐511. · Zbl 1440.93242
[13] HouJ, ChenFW, LiPH, ZhuZQ. Gray‐box parsimonious subspace identification of Hammerstein‐type systems. IEEE Trans Ind Electron. 2021;68(10):9941‐9951.
[14] LiMH, LiuXM. Maximum likelihood hierarchical least squares‐based iterative identification for dual‐rate stochastic systems. Int J Adapt Control Signal Process. 2021;35(2):240‐261. · Zbl 1543.93353
[15] LiMH, LiuXM. Maximum likelihood least squares based iterative estimation for a class of bilinear systems using the data filtering technique. Int J Control Autom Syst. 2020;18(6):1581‐1592.
[16] CandanC. Making linear prediction perform like maximum likelihood in Gaussian autoregressive model parameter estimation. Signal Process. 2020;166:107256.
[17] ZhangT, LuZR, LiuJK, et al. Parameter identification of nonlinear systems with time‐delay from time‐domain data. Nonlinear Dyn. 2021;104(4):4045‐4061.
[18] LiuX, YangXQ, YinS. Nonlinear system identification with robust multiple model approach. IEEE Trans Control Syst Technol. 2020;28(6):2728‐2735.
[19] WeiC, XuL, DingF. Stochastic gradient identification algorithm and its convergence for feedback nonlinear systems. Control Theory Appl. 2021;38:1‐10.
[20] WangZ, AnHR, LuoXL. Adaptive filtering‐based recursive identification for time‐varying Wiener output‐error systems with unknown noise statistics. J Franklin Inst. 2020;357(2):1280‐1298. · Zbl 1429.93400
[21] HuPP, DingF, ShengJ. Auxiliary model based least squares parameter estimation algorithm for feedback nonlinear systems using the hierarchical identification principle. J Franklin Inst. 2013;350(10):3248‐3259. · Zbl 1293.93789
[22] ZhangXX, XuJ. Identification of time delay in nonlinear systems with delayed feedback control. J Franklin Inst. 2015;352(8):2987‐2998. · Zbl 1395.93173
[23] ShenBB, DingF, XuL, et al. Data filtering based multi‐innovation gradient identification methods for feedback nonlinear systems. Int J Control Autom Syst. 2018;16(5):2225‐2234.
[24] WangLJ, JiY, YangHL, et al. Decomposition‐based multiinnovation gradient identification algorithms for a special bilinear system based on its input‐output representation. Int J Robust Nonlinear Control. 2020;30(9):3607‐3623. · Zbl 1466.93172
[25] ZhouYH. Partially‐coupled nonlinear parameter optimization algorithm for a class of multivariate hybrid models. Appl Math Comput. 2022;414:126663. · Zbl 1510.93338
[26] ZhouYH. Modeling nonlinear processes using the radial basis function‐based state‐dependent autoregressive models. IEEE Signal Process Lett. 2020;27:1600‐1604.
[27] ZhouYH. Hierarchical estimation approach for RBF‐AR models with regression weights based on the increasing data length. IEEE Trans Circuits Syst II Exp Briefs. 2021;68(12):3597‐3601.
[28] DongSJ, YuL, ZhangWA, et al. Recursive identification for Wiener non‐linear systems with non‐stationary disturbances. IET Control Theory Appl. 2019;13(16):2648‐2657.
[29] DuYW, LiuFZ, QiuJB, et al. A novel recursive approach for online identification of continuous‐time switched nonlinear systems. Int J Robust Nonlinear Control. 2021;31(15):7546‐7565. · Zbl 1527.93039
[30] ZhangH, WangT, ZhaoYL. Asymptotically efficient recursive identification of FIR systems with binary‐valued observations. IEEE Trans Syst Man Cybern Syst. 2021;51(5):2687‐2700.
[31] LiLW, RenXM, GuoFM. Modified multi‐innovation stochastic gradient algorithm for Wiener‐Hammerstein systems with backlash. J Franklin Inst. 2018;355(9):4050‐4075. · Zbl 1390.93821
[32] JiY, KangZ. Three‐stage forgetting factor stochastic gradient parameter estimation methods for a class of nonlinear systems. Int J Robust Nonlinear Control. 2021;31(3):871‐987. · Zbl 1525.93438
[33] JiY, JiangXK, WanLJ. Hierarchical least squares parameter estimation algorithm for two‐input Hammerstein finite impulse response systems. J Franklin Inst. 2020;357(8):5019‐5032. · Zbl 1437.93131
[34] JiY, KangZ, ZhangC. Two‐stage gradient‐based recursive estimation for nonlinear models by using the data filtering. Int J Control Autom Syst. 2021;19(8):2706‐2715.
[35] DuN, ZhangL, LongXH, et al. Recursive identification for choke finger system in wind tunnel. ISA Trans. 2020;107:173‐180.
[36] DingF, LiuXM, HayatT. Hierarchical least squares identification for feedback nonlinear equation‐error systems. J Franklin Inst. 2020;357(5):2958‐2977. · Zbl 1451.93404
[37] DingJ, ChenLJ, CaoZX, et al. Convergence analysis of the modified adaptive extended Kalman filter for the parameter estimation of a brushless DC motor. Int J Robust Nonlinear Control. 2021;31(16):7606‐7620. · Zbl 1527.93199
[38] LiZJ, DingJ, LinJX. Discrete fractional order PID controller design for nonlinear systems. Int J Syst Sci. 2021;52(15):3206‐3213. · Zbl 1483.93201
[39] DingJ, CaoZX, ChenJZ, et al. Weighted parameter estimation for Hammerstein nonlinear ARX systems. Circ Syst Signal Process. 2020;39(4):2178‐2192. · Zbl 1508.93067
[40] FengL, DingJ, HanYY. Improved sliding mode based EKF for SOC estimation of lithium‐ion batteries. Ionics. 2020;26(6):2875‐2882.
[41] XuL, YangEF. Auxiliary model multiinnovation stochastic gradient parameter estimation methods for nonlinear sandwich systems. Int J Robust Nonlinear Control. 2021;31(1):148‐165. · Zbl 1525.93043
[42] XuL, HayatT. Hierarchical recursive signal modeling for multi‐frequency signals based on discrete measured data. Int J Adapt Control Signal Process. 2021;35(5):676‐693. · Zbl 1543.93331
[43] XuL, ZhuQM. Decomposition strategy‐based hierarchical least mean square algorithm for control systems from the impulse responses. Int J Syst Sci. 2021;52(9):1806‐1821. · Zbl 1483.93637
[44] WanLJ. Decomposition‐ and gradient‐based iterative identification algorithms for multivariable systems using the multi‐innovation theory. Circ Syst Signal Process. 2019;38(7):2971‐2991.
[45] DingJL, ZhangWH. Finite‐time adaptive control for nonlinear systems with uncertain parameters based on the command filters. Int J Adapt Control Signal Process. 2021;35(9):1754‐1767. · Zbl 1543.93146
[46] MaP, WangL. Filtering‐based recursive least squares estimation approaches for multivariate equation‐error systems by using the multiinnovation theory. Int J Adapt Control Signal Process. 2021;35(9):1898‐1915. · Zbl 1536.93999
[47] MaoYW, LiuS, LiuJF. Robust economic model predictive control of nonlinear networked control systems with communication delays. Int J Adapt Control Signal Process. 2020;34(5):614‐637. · Zbl 1467.93095
[48] ChenJ, HuangB, GanM, ChenCLP. A novel reduced‐order algorithm for rational models based on Arnoldi process and Krylov subspace. Automatica. 2021;129:109663. · Zbl 1478.93081
[49] ChenJ, ZhuQM, LiuYJ. Modified Kalman filtering based multi‐step‐length gradient iterative algorithm for ARX models with random missing outputs. Automatica. 2020;118:109034. · Zbl 1447.93350
[50] ChenJ, ShenQY, MaJX, LiuYJ. Stochastic average gradient algorithm for multirate FIR models with varying time delays using self‐organizing maps. Int J Adapt Control Signal Process. 2020;34(7):955‐970. · Zbl 1469.93108
[51] MaH, PanJ, DingW. Partially‐coupled least squares based iterative parameter estimation for multi‐variable output‐error‐like autoregressive moving average systems. IET Control Theory Appl. 2019;13(18):3040‐3051.
[52] WangJW, JiY, ZhangC. Iterative parameter and order identification for fractional‐order nonlinear finite impulse response systems using the key term separation. Int J Adapt Control Signal Process. 2021;35(8):1562‐1577. · Zbl 1543.93052
[53] JiY, ZhangC, KangZ, et al. Parameter estimation for block‐oriented nonlinear systems using the key term separation. Int J Robust Nonlinear Control. 2020;30(9):3727‐3752. · Zbl 1466.93161
[54] LiMH, LiuXM. Iterative identification methods for a class of bilinear systems by using the particle filtering technique. Int J Adapt Control Signal Process. 2021;35(10):2056‐2074. · Zbl 1543.93320
[55] JiY, KangZ, LiuXM. The data filtering based multiple‐stage Levenberg‐Marquardt algorithm for Hammerstein nonlinear systems. Int J Robust Nonlinear Control. 2021;31(15):7007‐7025. · Zbl 1527.93457
[56] FanYM, LiuXM. Two‐stage auxiliary model gradient‐based iterative algorithm for the input nonlinear controlled autoregressive system with variable‐gain nonlinearity. Int J Robust Nonlinear Control. 2020;30(14):5492‐5509. · Zbl 1465.93041
[57] LiuXM, FanYM. Maximum likelihood extended gradient‐based estimation algorithms for the input nonlinear controlled autoregressive moving average system with variable‐gain nonlinearity. Int J Robust Nonlinear Control. 2021;31(9):4017‐4036. · Zbl 1526.93264
[58] FanYM, LiuXM. Auxiliary model‐based multi‐innovation recursive identification algorithms for an input nonlinear controlled autoregressive moving average system with variable‐gain nonlinearity. Int J Adapt Control Signal Process. 2022;36(3):690‐707.
[59] CaoY, SunYK, XieG, et al. A sound‐based fault diagnosis method for railway point machines based on two‐stage feature selection strategy and ensemble classifier. IEEE Trans Intell Transp Syst. 2022. doi:10.1109/TITS.2021.3109632
[60] CaoY, WenJK, HobinyA, et al. Parameter‐varying artificial potential field control of virtual coupling system with nonlinear dynamics. Fractals. 2022. doi:10.1142/S0218348X22400990 · Zbl 1485.93023
[61] CaoY, WenJK, MaLC. Tracking and collision avoidance of virtual coupling train control system. Alex Eng J. 2021;60(2):2115‐2125.
[62] SunYK, CaoY, MaLC. A fault diagnosis method for train plug doors via sound signals. IEEE Intell Transp Syst Mag. 2021;13(3):107‐117.
[63] SunY, CaoY, XieG, WenT. Sound based fault diagnosis for RPMs based on multi‐scale fractional permutation entropy and two‐scale algorithm. IEEE Trans Veh Technol. 2021;70(11):11184‐11192.
[64] SuS, WangXK, CaoY, et al. An energy‐efficient train operation approach by integrating the metro timetabling and eco‐driving. IEEE Trans Intell Transp Syst. 2020;21(10):4252‐4268.
[65] CaoY, WangZ, LiuF, et al. Bio‐inspired speed curve optimization and sliding mode tracking control for subway trains. IEEE Trans Veh Technol. 2019;68(7):6331‐6342.
[66] CaoY, SunYK, XieG, et al. Fault diagnosis of train plug door based on a hybrid criterion for IMFs selection and fractional wavelet package energy entropy. IEEE Trans Veh Technol. 2019;68(8):7544‐7551.
[67] CaoY, MaLC, XiaoS, et al. Standard analysis for transfer delay in CTCS‐3. Chin J Electron. 2017;26(5):1057‐1063.
[68] SuS, SheJF, LiKC, et al. A nonlinear safety equilibrium spacing based model predictive control for virtually coupled train set over gradient terrains. IEEE Trans Transp Electr. 2022. doi:10.1109/TTE.2021.3134669
[69] SuS, HanL, LiSK. Finite‐time event‐triggered consensus control for high‐speed train with gradient resistance. J Franklin Inst. 2022;359. doi:10.1016/j.jfranklin.2021.11.012 · Zbl 1481.93117
[70] SuS, TangT, XunJ, et al. Design of running grades for energy‐efficient train regulation: a case study for Beijing Yizhuang line. IEEE Intell Transp Syst Mag. 2021;13(2):189‐200.
[71] DingF. System Identification ‐ Performances Analysis for Identification Methods. Science Press; 2014.
[72] LiXY, WangHL, WuBY. A stable and efficient technique for linear boundary value problems by applying kernel functions. Appl Numer Math. 2022;172:206‐214. · Zbl 1484.65170
[73] LiXY, WuBY. A kernel regression approach for identification of first order differential equations based on functional data. Appl Math Lett. 2022;127:107832. · Zbl 1490.34021
[74] GengFZ, WuXY. Reproducing kernel functions based univariate spline interpolation. Appl Math Lett. 2021;122:107525. · Zbl 1524.65292
[75] LiXY, WuBY. Superconvergent kernel functions approaches for the second kind Fredholm integral equations. Appl Numer Math. 2021;167:202‐210. · Zbl 1467.65117
[76] DongH, YinCC, DaiHS. Spectrally negative levy risk model under Erlangized barrier strategy. J Comput Appl Math. 2019;351:101‐116. · Zbl 1419.91356
[77] ShaXY, XuZS, YinCC. Elliptical distribution‐based weight‐determining method for ordered weighted averaging operators. Int J Intell Syst. 2019;34(5):858‐877.
[78] YinCC, WenYZ. An extension of Paulsen‐Gjessing’s risk model with stochastic return on investments. Insur Math Econom. 2013;52(3):469‐476. · Zbl 1284.91281
[79] ZhaoYX, ChenP, YangHL. Optimal periodic dividend and capital injection problem for spectrally positive Levy processes. Insur Math Econom. 2017;74:135‐146. · Zbl 1394.91243
[80] ZhaoXH, DongH, DaiHS. On spectrally positive Levy risk processes with Parisian implementation delays in dividend payments. Stat Prob Lett. 2018;140:176‐184. · Zbl 1410.91297
[81] ZhaoYX, YinCC. The expected discounted penalty function under a renewal risk model with stochastic income. Appl Math Comput. 2012;218(10):6144‐6154. · Zbl 1242.60089
[82] XiongW, JiaX, YangD, AiM, LiL, WangS. DP‐LinkNet: a convolutional network for historical document image binarization. KSII Trans Internet Inf Systs. 2021;15(5):1778‐1797.
[83] KongJ, WangH, WangX. Multi‐stream hybrid architecture based on cross‐level fusion strategy for fine‐grained crop species recognition in precision agriculture. Comput Electron Agr. 2021;185:106134.
[84] ChangC, WuYT, JiangJC, et al. Prognostics of the state of health for lithium‐ion battery packs in energy storage applications. Energy. 2022;239(Part B):122189.
[85] ZhaoG, GaoTH, WangYD, et al. Optimal sizing of isolated microgrid containing photovoltaic/photothermal/wind/diesel/battery. Int J Photoenergy. 2021;2021:5566597.
[86] WangXG, ZhaoM, ZhouY, WanZW, XuW. Design and analysis for multi‐disc coreless axial‐flux permanent‐magnet synchronous machine. IEEE Transn Appl Supercond. 2021;31(8):5203804.
[87] WangXG, WanZW, TangL, XuW, ZhaoM. Electromagnetic performance analysis of an axial flux hybrid excitation motor for HEV drives. IEEE Trans Appl Supercond. 2021;31(8):5205605.
[88] LiM, XuG, LaiQ, ChenJ. A chaotic strategy‐based quadratic opposition‐based learning adaptive variable‐speed whale optimization algorithm. Math Comput Simul. 2022;193:71‐99. · Zbl 1540.90308
[89] ShuJ, HeJC, LiL. MSIS: multispectral instance segmentation method for power equipment. Comput Intell Neurosci. 2022;2022:2864717. doi:10.1155/2022/2864717
[90] AnY, ZhangY, GaoW, TongZ, HeZQ. A lightweight and practical anonymous authentication protocol based on bit‐self‐test PUF. Electronics. 2022;11.
[91] WangH, FanH, PanJ. Complex dynamics of a four‐dimensional circuit system. Int J Bifurc Chaos. 2021;31(14):2150208. · Zbl 1484.34122
[92] LiMH. The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique. Signal Process. 2018;147:23‐34.
[93] ZhengY, KongJ, JinX, etal. CropDeep: the crop vision dataset for deep‐learning‐based classification and detection in precision agriculture. Sensors. 2019;19(5):1058.
[94] ZhangX. Recursive parameter estimation methods and convergence analysis for a special class of nonlinear systems. Int J Robust Nonlinear Control. 2020;30(4):1373‐1393. · Zbl 1465.93218
[95] ZhaoZY, ZhouYQ, WangXY, WangZY, BaiYT. Water quality evolution mechanism modeling and health risk assessment based on stochastic hybrid dynamic systems. Expert Syst Appl. 2022;193:116404.
[96] ChenQ, ZhaoZY, WangXY, et al. Microbiological predictive modeling and risk analysis based on the one‐step kinetic integrated Wiener process. Innovative Food Sci Emerg Technol. 2022;75:102912.
[97] JinX, GongW, KongJ, BaiY, SuT. PFVAE: a planar flow‐based variational auto‐encoder prediction model for time‐series data. Mathematics. 2022;10(4):610.
[98] JinX, ZhangJ, KongJ, SuT, BaiY. A reversible automatic selection normalization (RASN) deep network for predicting in the smart agriculture system. Agronomy. 2022;12(3):591.
[99] JinX, GongW, KongJ, BaiY, SuT. A variational Bayesian deep network with data self‐screening layer for massive time‐series data forecasting. Entropy. 2022;24(3):335.
[100] ZhaoN, WuA, PeiY, et al. Spatial‐temporal aggregation graph convolution network for efficient mobile cellular traffic prediction. IEEE Commun Lett. 2022;26. doi:10.1109/LCOMM.2021.3138075
[101] ChenYF, ZhangC, LiuCY, et al. Atrial fibrillation detection using feedforward neural network. J Med Biolog Eng. 2022.
[102] LuMY, WuJ, ZhanXS, HanT, YanHC. Consensus of second‐order heterogeneous multi‐agent systems with and without input saturation. ISA Trans. 2022. doi:10.1016/j.isatra.2021.08.001
[103] LinJ, LiY, YangGC. FPGAN: face de‐identification method with generative adversarial networks for social robots. Neural Netw. 2021;133:132‐147.
[104] YangGC, ChenZJ, LiY, SuZD. Rapid relocation method for mobile robot based on improved ORB‐SLAM2 algorithm. Remote Sens. 2019;11(2):49.
[105] YaoP, WeiY, ZhaoZ. Null‐space‐based modulated reference trajectory generator for multi‐robots formation in obstacle environment. ISA Trans. 2022. doi:10.1016/j.isatra.2021.05.033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.