×

Preface. Special issue in honor of Reinout Quispel. (English) Zbl 1489.00025

From the text: The papers in this special issue span a wide range of topics closely related to Reinout’s research interests. There are three papers on continuous dynamical systems, all related to predator-prey equations. There are three papers on discrete integrable systems. The remaining papers concern geometric numerical integration and its applications.

MSC:

00B15 Collections of articles of miscellaneous specific interest
37-06 Proceedings, conferences, collections, etc. pertaining to dynamical systems and ergodic theory
65-06 Proceedings, conferences, collections, etc. pertaining to numerical analysis
01A70 Biographies, obituaries, personalia, bibliographies

Biographic References:

Quispel, Reinout
Full Text: DOI

References:

[1] P. Bader; S. Blanes; F. Casas; M. Thalhammer, Efficient time integration methods for Gross-Pitaevskii equations with rotation term, J. Comput. Dyn., 6, 147-169 (2019) · Zbl 1434.35175
[2] M. Benning; E. Celledoni; M. J. Ehrhardt; B. Owren; C.-B. Schönlieb, Deep learning as optimal control problems: Models and numerical methods, J. Comput. Dyn., 6, 171-198 (2019) · Zbl 1429.68249
[3] G. Bogfjellmo, Algebraic structure of aromatic B-series, J. Comput. Dyn., 6, 199-122 (2019) · Zbl 1434.37045
[4] C. J. Budd; A. Iserles, Geometric integration: Numerical solution of differential equations on manifolds, Phil. Trans. Roy. Soc. A Math. Phys. Eng. Sci., 357, 945-956 (1999) · Zbl 0933.65142 · doi:10.1098/rsta.1999.0360
[5] E. Celledoni; R. I. McLachlan; B. Owren; G. R. W. Quispel, Geometric properties of Kahan’s method, J. Phys. A, 46, 025201, 12 pp (2012) · Zbl 1278.65192 · doi:10.1088/1751-8113/46/2/025201
[6] H. Christodoulidi; A. N. W. Hone; T. E. Kouloukas, A new class of integrable Lotka-Volterra systems, J. Comput. Dyn., 6, 223-237 (2019) · Zbl 1434.37036
[7] M. Condon; A. Iserles; K. Kropielnicka; P. Singh, Solving the wave equation with multifrequency oscillations, J. Comput. Dyn., 6, 239-249 (2019) · Zbl 1434.65200
[8] C. Curry; S. Marsland; R. I. McLachlan, Principal symmetric space analysis, J. Comput. Dyn., 6, 251-276 (2019) · Zbl 1437.62217
[9] C. A. Evripidou; P. Kassotakis; P. Vanhaecke, Integrable reductions of the dressing chain, J. Comput. Dyn., 6, 277-306 (2019) · Zbl 1440.53090
[10] G. Frasca-Caccia; P. E. Hydon, Locally conservative finite difference schemes for the modified KdV equation, J. Comput. Dyn., 6, 307-323 (2019) · Zbl 1436.65100
[11] F. A. Haggar; G. B. Byrnes; G. R. W. Quispel; H. W. Capel, K-integrals and k-Lie symmetries in discrete dynamical systems, Physica A, 233, 379-394 (1996) · Zbl 0985.37053
[12] A. Iserles; G. R. W. Quispel; P. S. P. Tse, B-series methods cannot be volume-preserving, BIT Numerical Mathematics, 47, 351-378 (2007) · Zbl 1128.65054 · doi:10.1007/s10543-006-0114-8
[13] N. Joshi; P. Kassotakis, Re-factorising a QRT map, J. Comput. Dyn., 6, 325-343 (2019) · Zbl 1434.37039
[14] J. S. W. Lamb; G. R. W. Quispel, Reversing k-symmetries in dynamical systems, Physica D, 73, 277-304 (1994) · Zbl 0814.58035 · doi:10.1016/0167-2789(94)90101-5
[15] R. I. McLachlan; A. Murua, The Lie algebra of classical mechanics, J. Comput. Dyn., 6, 345-360 (2019) · Zbl 1431.17004
[16] R. I. McLachlan; G. R. W. Quispel; N. Robidoux, Unified approach to Hamiltonian systems, Poisson systems, gradient systems, and systems with Lyapunov functions or first integrals, Phys. Rev. Lett., 81, 2399-2403 (1998) · Zbl 1042.37522 · doi:10.1103/PhysRevLett.81.2399
[17] R. I. McLachlan; G. R. W. Quispel; G. S. Turner, Numerical integrators that preserve symmetries and reversing symmetries, SIAM J. Numer. Anal., 35, 586-599 (1998) · Zbl 0912.34015 · doi:10.1137/S0036142995295807
[18] R. I. McLachlan; G. R. W. Quispel, What kinds of dynamics are there? Lie pseudogroups, dynamical systems and geometric integration, Nonlinearity, 14, 1689-1705 (2001) · Zbl 0994.65138 · doi:10.1088/0951-7715/14/6/315
[19] Y. Miyatake; T. Nakagawa; T. Sogabe; S.-L. Zhang, A structure-preserving fourier pseudo-spectral linearly implicit scheme for the space-fractional nonlinear Schrödinger equation, J. Comput. Dyn., 6, 361-383 (2019) · Zbl 1434.65207
[20] S. Pathiraja; S. Reich, Discrete gradients for computational Bayesian inference, J. Comput. Dyn., 6, 385-400 (2019) · Zbl 1437.62110
[21] M. Petrera; Y. B. Suris, Geometry of the Kahan discretizations of planar quadratic hamiltonian systems. Ⅱ. Systems with a linear Poisson tensor, J. Comput. Dyn., 6, 401-408 (2019) · Zbl 1457.37085
[22] G. R. W. Quispel, Linear Integral Equations and Soliton Systems, thesis, University of Leiden, 1983, https://www.lorentz.leidenuniv.nl/IL-publications/dissertations/sources/Quispel_1983.pdf.
[23] G. R. W. Quispel; D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41, 045206, 7 pp (2008) · Zbl 1132.65065 · doi:10.1088/1751-8113/41/4/045206
[24] G. R. W. Quispel; F. W. Nijhoff; H. W. Capel; J. van der Linden, Linear integral equations and nonlinear difference-difference equations, Physica A: Statistical and Theoretical Physics, 125, 344-380 (1984) · Zbl 0598.45009 · doi:10.1016/0378-4371(84)90059-1
[25] G. R. W. Quispel; J. A. G. Roberts; C. J. Thompson, Integrable mappings and soliton equations. Ⅰ, Phys. Lett. A, 126, 419-421 (1988) · Zbl 0679.58023 · doi:10.1016/0375-9601(88)90803-1
[26] G. R. W. Quispel; J. A. G. Roberts; C. J. Thompson, Integrable mappings and soliton equations Ⅱ, Physica D, 34, 183-192 (1989) · Zbl 0679.58024 · doi:10.1016/0167-2789(89)90233-9
[27] G. R. W. Quispel; H. W. Capel, Solving ODEs numerically while preserving a first integral, Phys. Lett. A, 218, 223-228 (1996) · Zbl 0972.65507 · doi:10.1016/0375-9601(96)00403-3
[28] J. A. G. Roberts; G. R. W. Quispel, Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems, Phys. Rep., 216, 63-177 (1992) · doi:10.1016/0370-1573(92)90163-T
[29] N. Sætran; A. Zanna, Chains of rigid bodies and their numerical simulation by local frame methods, J. Comput. Dyn., 6, 409-427 (2019) · Zbl 1431.70005
[30] Y. Shi; Y. Sun; Y. Wang; J. Liu, Study of adaptive symplectic methods for simulating charged particle dynamics, J. Comput. Dyn., 6, 429-448 (2019) · Zbl 1432.37110
[31] D. T. Tran; J. A. G. Roberts, Linear degree growth in lattice equations, J. Comput. Dyn., 6, 449-467 (2019) · Zbl 1478.37078
[32] J. M. Tuwankotta; E. Harjanto, Strange attractors in a predator-prey system with non-monotonic response function and periodic perturbation, J. Comput. Dyn., 6, 469-483 (2019) · Zbl 1434.37052
[33] M. Zadra; M. L. Mansfield, Using Lie group integrators to solve two dimensional variational problems with symmetry, J. Comput. Dyn., 6, 485-511 (2019) · Zbl 1433.58015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.