×

A structure-preserving Fourier pseudo-spectral linearly implicit scheme for the space-fractional nonlinear Schrödinger equation. (English) Zbl 1434.65207

Summary: We propose a Fourier pseudo-spectral scheme for the space-fractional nonlinear Schrödinger equation. The proposed scheme has the following features: it is linearly implicit, it preserves two invariants of the equation, its unique solvability is guaranteed without any restrictions on space and time step sizes. The scheme requires solving a complex symmetric linear system per time step. To solve the system efficiently, we also present a certain variable transformation and preconditioner.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65F08 Preconditioners for iterative methods
65N22 Numerical solution of discretized equations for boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65F10 Iterative numerical methods for linear systems
35R11 Fractional partial differential equations
35Q91 PDEs in connection with game theory, economics, social and behavioral sciences
81S40 Path integrals in quantum mechanics

References:

[1] C. Besse, A relaxation scheme for the nonlinear Schrödinger equation, SIAM J. Numer. Anal., 42, 934-952 (2004) · Zbl 1077.65103 · doi:10.1137/S0036142901396521
[2] C. Besse, S. Descombes, G. Dujardin and I. Lacroix-Violet, Energy preserving methods for nonlinear Schrödinger equations, (2018).
[3] E. Celledoni; V. Grimm; R. I. McLachlan; D. I. McLaren; D. O’Neale; B. Owren; G. R. W. Quispel, Preserving energy resp. dissipation in numerical PDEs using the “average vector field” method, J. Comput. Phys., 231, 6770-6789 (2012) · Zbl 1284.65184 · doi:10.1016/j.jcp.2012.06.022
[4] Y. Cho; G. Hwang; S. Kwon; S. Lee, Well-posedness and ill-posedness for the cubic fractional Schrödinger equations, Discrete Contin. Dyn. Syst., 35, 2863-2880 (2015) · Zbl 1332.35339 · doi:10.3934/dcds.2015.35.2863
[5] M. Dahlby; B. Owren, A general framework for deriving integral preserving numerical methods for PDEs, SIAM J. Sci. Comput., 33, 2318-2340 (2011) · Zbl 1246.65240 · doi:10.1137/100810174
[6] M. Delfour; M. Fortin; G. Payre, Finite-difference solutions of a non-linear Schrödinger equation, J. Comput. Phys., 44, 277-288 (1981) · Zbl 0477.65086 · doi:10.1016/0021-9991(81)90052-8
[7] S. W. Duo; Y. Z. Zhang, Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation, Comput. Math. Appl., 71, 2257-2271 (2016) · Zbl 1443.65242 · doi:10.1016/j.camwa.2015.12.042
[8] E. Faou, Geometric Numerical Integration and Schrödinger Equations, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2012. · Zbl 1239.65078
[9] R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, Emended edition, Emended and with a preface by Daniel F. Styer. Dover Publications, Inc., Mineola, NY, 2010. · Zbl 1220.81156
[10] B. L. Guo; Y. Q. Han; J. Xin, Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation, Appl. Math. Comput., 204, 468-477 (2008) · Zbl 1163.35483 · doi:10.1016/j.amc.2008.07.003
[11] B. L. Guo; Z. H. Huo, Global well-posedness for the fractional nonlinear Schrödinger equation, Comm. Partial Differential Equations, 36, 247-255 (2011) · Zbl 1211.35268 · doi:10.1080/03605302.2010.503769
[12] X. Y. Guo and M. Y. Xu, Some physical applications of fractional Schrödinger equation, J. Math. Phys., 47 (2006), 082104, 9 pp. · Zbl 1112.81028
[13] K. Kirkpatrick; E. Lenzmann; G. Staffilani, On the continuum limit for discrete NLS with long-range lattice interactions, Comm. Math. Phys., 317, 563-591 (2013) · Zbl 1258.35182 · doi:10.1007/s00220-012-1621-x
[14] N. Laskin, Fractional Quantum Mechanics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2018. · Zbl 1425.81007
[15] N. Laskin, Fractional Schrödinger equation, Phys. Rev. E (3), 66 (2002), 056108, 7 pp.
[16] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268, 298-305 (2000) · Zbl 0948.81595 · doi:10.1016/S0375-9601(00)00201-2
[17] M. Li; X.-M. Gu; C. M. Huang; M. F. Fei; G. Y. Zhang, A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations, J. Comput. Phys., 358, 256-282 (2018) · Zbl 1382.65320 · doi:10.1016/j.jcp.2017.12.044
[18] M. Li, C. Huang and W. Ming, A relaxation-type Galerkin FEM for nonlinear fractional Schrödinger equations, Numer. Algorithms, (2019), 1-26.
[19] M. Li; C. M. Huang; P. D. Wang, Galerkin finite element method for nonlinear fractional Schrödinger equations, Numer. Algorithms, 74, 499-525 (2017) · Zbl 1359.65208 · doi:10.1007/s11075-016-0160-5
[20] S. Longhi, Fractional Schrödinger equation in optics, Opt. Lett., 40 (2015), 1117. · Zbl 1360.81357
[21] T. Matsuo; D. Furihata, Dissipative or conservative finite-difference schemes for complex-valued nonlinear partial differential equations, J. Comput. Phys., 171, 425-447 (2001) · Zbl 0993.65098 · doi:10.1006/jcph.2001.6775
[22] Y. Miyatake; T. Matsuo, Conservative finite difference schemes for the Degasperis-Procesi equation, J. Comput. Appl. Math., 236, 3728-3740 (2012) · Zbl 1250.76138 · doi:10.1016/j.cam.2011.09.004
[23] Y. Miyatake; T. Matsuo; D. Furihata, Invariants-preserving integration of the modified Camassa-Holm equation, Jpn. J. Ind. Appl. Math., 28, 351-381 (2011) · Zbl 1231.65144 · doi:10.1007/s13160-011-0043-z
[24] G. R. W. Quispel and D. I. McLaren, A new class of energy-preserving numerical integration methods, J. Phys. A, 41 (2008), 045206, 7 pp. · Zbl 1132.65065
[25] T. Sogabe; S.-L. Zhang, A COCR method for solving complex symmetric linear systems, J. Comput. Appl. Math., 199, 297-303 (2007) · Zbl 1108.65028 · doi:10.1016/j.cam.2005.07.032
[26] H. A. van der Vorst, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13, 631-644 (1992) · Zbl 0761.65023 · doi:10.1137/0913035
[27] H. A. van der Vorst; J. B. Melissen, A Petrov-Galerkin type method for solving \({A}x = b\), where \({A}\) is symmetric complex, IEEE Trans. Mag., 26, 706-708 (1990)
[28] D. L. Wang; A. G. Xiao; W. Yang, A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equations, J. Comput. Phys., 272, 644-655 (2014) · Zbl 1349.65339 · doi:10.1016/j.jcp.2014.04.047
[29] P. D. Wang; C. M. Huang, A conservative linearized difference scheme for the nonlinear fractional Schrödinger equation, Numer. Algorithms, 69, 625-641 (2015) · Zbl 1325.65127 · doi:10.1007/s11075-014-9917-x
[30] P. D. Wang; C. M. Huang, An energy conservative difference scheme for the nonlinear fractional Schrödinger equations, J. Comput. Phys., 293, 238-251 (2015) · Zbl 1349.65346 · doi:10.1016/j.jcp.2014.03.037
[31] P. D. Wang; C. M. Huang, Split-step alternating direction implicit difference scheme for the fractional Schrödinger equation in two dimensions, Comput. Math. Appl., 71, 1114-1128 (2016) · Zbl 1443.65145 · doi:10.1016/j.camwa.2016.01.022
[32] P. D. Wang; C. M. Huang, Structure-preserving numerical methods for the fractional Schrödinger equation, Appl. Numer. Math., 129, 137-158 (2018) · Zbl 1393.65055 · doi:10.1016/j.apnum.2018.03.008
[33] P. D. Wang; C. M. Huang; L. B. Zhao, Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation, J. Comput. Appl. Math., 306, 231-247 (2016) · Zbl 1382.65260 · doi:10.1016/j.cam.2016.04.017
[34] Y. Q. Zhang, X. Liu, M. R. Belić, W. P. Zhong, Y. P. Zhang and M. Xiao, Propagation dynamics of a light beam in a fractional Schrödinger equation, Phys. Rev. Lett., 115 (2015), 180403.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.