×

Generalized splay states in phase oscillator networks. (English) Zbl 1468.34042

Summary: Networks of coupled phase oscillators play an important role in the analysis of emergent collective phenomena. In this article, we introduce generalized \(m\)-splay states constituting a special subclass of phase-locked states with vanishing \(m\) th order parameter. Such states typically manifest incoherent dynamics, and they often create high-dimensional families of solutions (splay manifolds). For a general class of phase oscillator networks, we provide explicit linear stability conditions for splay states and exemplify our results with the well-known Kuramoto-Sakaguchi model. Importantly, our stability conditions are expressed in terms of just a few observables such as the order parameter or the trace of the Jacobian. As a result, these conditions are simple and applicable to networks of arbitrary size. We generalize our findings to phase oscillators with inertia and adaptively coupled phase oscillator models.
©2021 American Institute of Physics

MSC:

34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
34D20 Stability of solutions to ordinary differential equations

References:

[1] Acebrón, J. A.; Bonilla, L. L.; Pérez Vicente, C. J.; Ritort, F.; Spigler, R., The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77, 137 (2005) · doi:10.1103/RevModPhys.77.137
[2] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences (2001), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0993.37002
[3] Winfree, A. T., The Geometry of Biological Time (1980), Springer: Springer, New York · Zbl 0464.92001
[4] Hoppensteadt, F. C.; Izhikevich, E. M., Weakly Connected Neural Networks (1997), Springer: Springer, New York · Zbl 0887.92003
[5] Pietras, B.; Daffertshofer, A., Network dynamics of coupled oscillators and phase reduction techniques, Phys. Rep., 819, 1 (2019) · doi:10.1016/j.physrep.2019.06.001
[6] Ashwin, P.; Coombes, S.; Nicks, R., Mathematical frameworks for oscillatory network dynamics in neuroscience, J. Math. Neurosci., 6:2, 2 (2016) · Zbl 1356.92015 · doi:10.1186/s13408-015-0033-6
[7] Klinshov, V.; Yanchuk, S.; Stephan, A.; Nekorkin, V. I., Phase response function for oscillators with strong forcing or coupling, Europhys. Lett., 118, 50006 (2017) · doi:10.1209/0295-5075/118/50006
[8] Rosenblum, M.; Pikovsky, A., Numerical phase reduction beyond the first order approximation, Chaos, 29, 011105 (2019) · Zbl 1406.34076 · doi:10.1063/1.5079617
[9] Ermentrout, G. B.; Park, Y.; Wilson, D., Recent advances in coupled oscillator theory, Philos. Trans. R. Soc. A, 377, 20190092 (2019) · Zbl 1462.34059 · doi:10.1098/rsta.2019.0092
[10] Kuramoto, Y., Chemical Oscillations, Waves and Turbulence (1984), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0558.76051
[11] Strogatz, S. H., From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143, 1 (2000) · Zbl 0956.00057 · doi:10.1016/S0167-2789(00)00094-4
[12] Strogatz, S. H.; Stewart, I., Coupled oscillators and biological synchronization, Sci. Am., 269, 102 (1993) · doi:10.1038/scientificamerican1293-102
[13] Strogatz, S. H., Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily Life (2003), Hyperion: Hyperion, New York
[14] Rodrigues, F. A.; M. Peron, T. K. D.; Ji, P.; Kurths, J., The Kuramoto model in complex networks, Phys. Rep., 610, 1 (2016) · Zbl 1357.34089 · doi:10.1016/j.physrep.2015.10.008
[15] Breakspear, M.; Heitmann, S.; Daffertshofer, A., Generative models of cortical oscillations: Neurobiological implications of the Kuramoto model, Front. Hum. Neurosci., 4, 190 (2010) · doi:10.3389/fnhum.2010.00190
[16] Lücken, L.; Popovych, O. V.; Tass, P. A.; Yanchuk, S., Noise-enhanced coupling between two oscillators with long-term plasticity, Phys. Rev. E, 93, 032210 (2016) · doi:10.1103/PhysRevE.93.032210
[17] Madadi Asl, M.; Valizadeh, A.; Tass, P. A., Dendritic and axonal propagation delays may shape neuronal networks with plastic synapses, Front. Physiol., 9, 1849 (2018) · doi:10.3389/fphys.2018.01849
[18] Röhr, V.; Berner, R.; Lameu, E. L.; Popovych, O. V.; Yanchuk, S., Frequency cluster formation and slow oscillations in neural populations with plasticity, PLoS ONE, 14, e0225094 (2019) · doi:10.1371/journal.pone.0225094
[19] Berner, R.; Vock, S.; Schöll, E.; Yanchuk, S., Desynchronization transitions in adaptive networks, Phys. Rev. Lett., 126, 028301 (2021) · doi:10.1103/PhysRevLett.126.028301
[20] Bick, C.; Goodfellow, M.; Laing, C. R.; Martens, E. A., Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: A review, J. Math. Neurosci., 10, 9 (2020) · Zbl 1448.92011 · doi:10.1186/s13408-020-00086-9
[21] Filatrella, G.; Nielsen, A. H.; Pedersen, N. F., Analysis of a power grid using a Kuramoto-like model, Eur. Phys. J. B, 61, 485 (2008) · doi:10.1140/epjb/e2008-00098-8
[22] Tumash, L.; Olmi, S.; Schöll, E., Stability and control of power grids with diluted network topology, Chaos, 29, 123105 (2019) · Zbl 1429.34059 · doi:10.1063/1.5111686
[23] Taher, H.; Olmi, S.; Schöll, E., Enhancing power grid synchronization and stability through time delayed feedback control, Phys. Rev. E, 100, 062306 (2019) · doi:10.1103/PhysRevE.100.062306
[24] Hellmann, F.; Schultz, P.; Jaros, P.; Levchenko, R.; Kapitaniak, T.; Kurths, J.; Maistrenko, Y., Network-induced multistability through lossy coupling and exotic solitary states, Nat. Commun., 11, 592 (2020) · doi:10.1038/s41467-020-14417-7
[25] Totz, C. H.; Olmi, S.; Schöll, E., Control of synchronization in two-layer power grids, Phys. Rev. E, 102, 022311 (2020) · doi:10.1103/PhysRevE.102.022311
[26] Berner, R.; Yanchuk, S.; Schöll, E., What adaptive neuronal networks teach us about power grids, Phys. Rev. E, 103, 042315 (2021) · doi:10.1103/PhysRevE.103.042315
[27] Maistrenko, Y.; Penkovsky, B.; Rosenblum, M., Solitary state at the edge of synchrony in ensembles with attractive and repulsive interactions, Phys. Rev. E, 89, 060901 (2014) · doi:10.1103/PhysRevE.89.060901
[28] Omel’chenko, O. E.; Knobloch, E., Chimerapedia: Coherence-incoherence patterns in one, two and three dimensions, New J. Phys., 21, 093034 (2019) · doi:10.1088/1367-2630/ab3f6b
[29] Teichmann, E.; Rosenblum, M., Solitary states and partial synchrony in oscillatory ensembles with attractive and repulsive interactions, Chaos, 29, 093124 (2019) · Zbl 1423.34061 · doi:10.1063/1.5118843
[30] Watanabe, S.; Strogatz, S. H., Integrability of a globally coupled oscillator array, Phys. Rev. Lett., 70, 2391 (1993) · Zbl 1063.34505 · doi:10.1103/PhysRevLett.70.2391
[31] Watanabe, S.; Strogatz, S. H., Constants of motion for superconducting Josephson arrays, Physica D, 74, 197 (1994) · Zbl 0812.34043 · doi:10.1016/0167-2789(94)90196-1
[32] Marvel, S. A.; Mirollo, R. E.; Strogatz, S. H., Identical phase oscillators with global sinusoidal coupling evolve by möbius group action, Chaos, 19, 043104 (2009) · Zbl 1311.34082 · doi:10.1063/1.3247089
[33] Stewart, I., Phase oscillators with sinusoidal coupling interpreted in terms of projective geometry, Int. J. Bifurc. Chaos, 21, 1795 (2011) · Zbl 1248.34045 · doi:10.1142/S0218127411029446
[34] Strogatz, S. H.; Mirollo, R. E., Stability of incoherence in a population of coupled oscillators, J. Stat. Phys., 63, 613 (1991) · doi:10.1007/BF01029202
[35] Ott, E.; Antonsen, T. M., Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18, 037113 (2008) · Zbl 1309.34058 · doi:10.1063/1.2930766
[36] Omel’chenko, O. E.; Maistrenko, Y.; Tass, P. A., Chimera states: The natural link between coherence and incoherence, Phys. Rev. Lett., 100, 044105 (2008) · doi:10.1103/PhysRevLett.100.044105
[37] Abrams, D. M.; Mirollo, R. E.; Strogatz, S. H.; Wiley, D. A., Solvable model for chimera states of coupled oscillators, Phys. Rev. Lett., 101, 084103 (2008) · doi:10.1103/PhysRevLett.101.084103
[38] Omelchenko, I.; Omel’chenko, O. E.; Hövel, P.; Schöll, E., When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states, Phys. Rev. Lett., 110, 224101 (2013) · doi:10.1103/PhysRevLett.110.224101
[39] Omel’chenko, O. E., The mathematics behind chimera states, Nonlinearity, 31, R121 (2018) · Zbl 1395.34045 · doi:10.1088/1361-6544/aaaa07
[40] Pikovsky, A.; Rosenblum, M., Dynamics of globally coupled oscillators: Progress and perspectives, Chaos, 25, 097616 (2015) · Zbl 1374.34001 · doi:10.1063/1.4922971
[41] Gottwald, G. A., Model reduction for networks of coupled oscillators, Chaos, 25, 053111 (2015) · Zbl 1374.34106 · doi:10.1063/1.4921295
[42] Gong, C. C.; Pikovsky, A., Low-dimensional dynamics for higher-order harmonic, globally coupled phase-oscillator ensembles, Phys. Rev. E, 100, 062210 (2019) · doi:10.1103/PhysRevE.100.062210
[43] Smith, D. L.; Gottwald, G. A., Model reduction for the collective dynamics of globally coupled oscillators: From finite networks to the thermodynamic limit, Chaos, 30, 093107 (2020) · Zbl 1451.34042 · doi:10.1063/5.0009790
[44] Pikovsky, A.; Rosenblum, M., Partially integrable dynamics of hierarchical populations of coupled oscillators, Phys. Rev. Lett., 101, 264103 (2008) · doi:10.1103/PhysRevLett.101.264103
[45] Montbrió, E.; Pazó, D.; Roxin, A., Macroscopic description for networks of spiking neurons, Phys. Rev. X, 5, 021028 (2015) · doi:10.1103/physrevx.5.021028
[46] Tyulkina, I. V.; Goldobin, D. S.; Klimenko, L. S.; Pikovsky, A., Dynamics of noisy oscillator populations beyond the Ott-Antonsen ansatz, Phys. Rev. Lett., 120, 264101 (2018) · doi:10.1103/PhysRevLett.120.264101
[47] Goldobin, D. S.; di Volo, M.; Torcini, A.
[48] Ronge, R.; Zaks, M. A., Emergence and stability of periodic two-cluster states for ensembles of excitable units, Phys. Rev. E, 103, 012206 (2021) · doi:10.1103/PhysRevE.103.012206
[49] Wiley, D. A.; Strogatz, S. H.; Girvan, M., The size of the sync basin, Chaos, 16, 015103 (2006) · Zbl 1144.37417 · doi:10.1063/1.2165594
[50] Girnyk, T.; Hasler, M.; Maistrenko, Y., Multistability of twisted states in non-locally coupled Kuramoto-type models, Chaos, 22, 013114 (2012) · Zbl 1331.34053 · doi:10.1063/1.3677365
[51] Burylko, O.; Mielke, A.; Wolfrum, M.; Yanchuk, S., Coexistence of hamiltonian-like and dissipative dynamics in rings of coupled phase oscillators with skew-symmetric coupling, SIAM J. Appl. Dyn. Syst., 17, 2076 (2018) · Zbl 1401.34040 · doi:10.1137/17M1155685
[52] Berner, R.; Polanska, A.; Schöll, E.; Yanchuk, S., Solitary states in adaptive nonlocal oscillator networks, Eur. Phys. J. Spec. Top., 229, 2183 (2020) · doi:10.1140/epjst/e2020-900253-0
[53] Choe, C. U.; Dahms, T.; Hövel, P.; Schöll, E., Controlling synchrony by delay coupling in networks: From in-phase to splay and cluster states, Phys. Rev. E, 81, 025205(R) (2010) · doi:10.1103/PhysRevE.81.025205
[54] Zou, W.; Zhan, M., Splay states in a ring of coupled oscillators: From local to global coupling, SIAM J. Appl. Dyn. Syst., 8, 1324 (2009) · Zbl 1185.34044 · doi:10.1137/09075398X
[55] Perlikowski, P.; Yanchuk, S.; Popovych, O. V.; Tass, P. A., Periodic patterns in a ring of delay-coupled oscillators, Phys. Rev. E, 82, 036208 (2010) · doi:10.1103/PhysRevE.82.036208
[56] Calamai, M.; Politi, A.; Torcini, A., Stability of splay states in globally coupled rotators, Phys. Rev. E, 80, 036209 (2009) · doi:10.1103/PhysRevE.80.036209
[57] Olmi, S.; Torcini, A.; Politi, A., Linear stability in networks of pulse-coupled neurons, Front. Comput. Neurosci., 8, 8 (2014) · doi:10.3389/fncom.2014.00008
[58] Dipoppa, M.; Krupa, M.; Torcini, A.; Gutkin, B. S., Splay states in finite pulse-coupled networks of excitable neurons, SIAM J. Appl. Dyn. Syst., 11, 864 (2012) · Zbl 1254.92008 · doi:10.1137/110859683
[59] Gómez-Gardeñes, J.; Moreno, Y.; Arenas, A., Paths to synchronization on complex networks, Phys. Rev. Lett., 98, 034101 (2007) · doi:10.1103/PhysRevLett.98.034101
[60] Dörfler, F.; Bullo, F., Synchronization in complex networks of phase oscillators: A survey, Automatica, 50, 1539 (2014) · Zbl 1296.93005 · doi:10.1016/j.automatica.2014.04.012
[61] Pazó, D., Thermodynamic limit of the first-order phase transition in the Kuramoto model, Phys. Rev. E, 72, 046211 (2005) · doi:10.1103/PhysRevE.72.046211
[62] Gómez-Gardeñes, J.; Gómez, S.; Arenas, A.; Moreno, Y., Explosive synchronization transitions in scale-free networks, Phys. Rev. Lett., 106, 128701 (2011) · doi:10.1103/PhysRevLett.106.128701
[63] Boccaletti, S.; Almendral, J. A.; Guan, S.; Leyva, I.; Liu, Z.; Sendiña-Nadal, I.; Wang, Z.; Zou, Y., Explosive transitions in complex networks’ structure and dynamics: Percolation and synchronization, Phys. Rep., 660, 1 (2016) · Zbl 1359.34048 · doi:10.1016/j.physrep.2016.10.004
[64] Nicosia, V.; Valencia, M.; Chavez, M.; Díaz-Guilera, A.; Latora, V., Remote synchronization reveals network symmetries and functional modules, Phys. Rev. Lett., 110, 174102 (2013) · doi:10.1103/PhysRevLett.110.174102
[65] Ermentrout, G. B., An adaptive model for synchrony in the firefly pteroptyx malaccae, J. Math. Biol., 29, 571 (1991) · Zbl 0719.92009 · doi:10.1007/BF00164052
[66] Olmi, S.; Navas, A.; Boccaletti, S.; Torcini, A., Hysteretic transitions in the Kuramoto model with inertia, Phys. Rev. E, 90, 042905 (2014) · doi:10.1103/PhysRevE.90.042905
[67] Jaros, P.; Maistrenko, Y.; Kapitaniak, T., Chimera states on the route from coherence to rotating waves, Phys. Rev. E, 91, 022907 (2015) · doi:10.1103/PhysRevE.91.022907
[68] Olmi, S., Chimera states in coupled Kuramoto oscillators with inertia, Chaos, 25, 123125 (2015) · Zbl 1374.34117 · doi:10.1063/1.4938734
[69] Belykh, I. V.; Brister, B. N.; Belykh, V. N., Bistability of patterns of synchrony in Kuramoto oscillators with inertia, Chaos, 26, 094822 (2016) · Zbl 1382.34037 · doi:10.1063/1.4961435
[70] Maistrenko, Y.; Brezetsky, S.; Jaros, P.; Levchenko, R.; Kapitaniak, T., Smallest chimera states, Phys. Rev. E, 95, 010203R (2017) · doi:10.1103/PhysRevE.95.010203
[71] Jaros, P.; Brezetsky, S.; Levchenko, R.; Dudkowski, D.; Kapitaniak, T.; Maistrenko, Y., Solitary states for coupled oscillators with inertia, Chaos, 28, 011103 (2018) · Zbl 1390.34136 · doi:10.1063/1.5019792
[72] Kruk, N.; Maistrenko, Y.; Koeppl, H., Solitary states in the mean-field limit, Chaos, 30, 111104 (2020) · Zbl 1460.34043 · doi:10.1063/5.0029585
[73] Brezetsky, S.; Jaros, P.; Levchenko, R.; Kapitaniak, T.; Maistrenko, Y., Chimera complexity, Phys. Rev. E, 103, L050204 (2021) · doi:10.1103/PhysRevE.103.L050204
[74] Taylor, D.; Ott, E.; Restrepo, J. G., Spontaneous synchronization of coupled oscillator systems with frequency adaptation, Phys. Rev. E, 81, 046214 (2010) · doi:10.1103/PhysRevE.81.046214
[75] Yeung, M. K. S.; Strogatz, S. H., Time delay in the Kuramoto model of coupled oscillators, Phys. Rev. Lett., 82, 648 (1999) · doi:10.1103/PhysRevLett.82.648
[76] Petkoski, S.; Stefanovska, A., Kuramoto model with time-varying parameters, Phys. Rev. E, 86, 046212 (2012) · doi:10.1103/PhysRevE.86.046212
[77] Seliger, P.; Young, S. C.; Tsimring, L. S., Plasticity and learning in a network of coupled phase oscillators, Phys. Rev. E, 65, 041906 (2002) · Zbl 1244.34078 · doi:10.1103/PhysRevE.65.041906
[78] Maistrenko, Y.; Lysyansky, B.; Hauptmann, C.; Burylko, O.; Tass, P. A., Multistability in the Kuramoto model with synaptic plasticity, Phys. Rev. E, 75, 066207 (2007) · doi:10.1103/PhysRevE.75.066207
[79] Aoki, T.; Aoyagi, T., Scale-free structures emerging from co-evolution of a network and the distribution of a diffusive resource on it, Phys. Rev. Lett., 109, 208702 (2012) · doi:10.1103/PhysRevLett.109.208702
[80] Kasatkin, D. V.; Yanchuk, S.; Schöll, E.; Nekorkin, V. I., Self-organized emergence of multi-layer structure and chimera states in dynamical networks with adaptive couplings, Phys. Rev. E, 96, 062211 (2017) · doi:10.1103/PhysRevE.96.062211
[81] Bacic, I.; Yanchuk, S.; Wolfrum, M.; Franović, I., Noise-induced switching in two adaptively coupled excitable systems, Eur. Phys. J. Spec. Top., 227, 1077 (2018) · doi:10.1140/epjst/e2018-800084-6
[82] Berner, R.; Schöll, E.; Yanchuk, S., Multiclusters in networks of adaptively coupled phase oscillators, SIAM J. Appl. Dyn. Syst., 18, 2227 (2019) · Zbl 1540.34101 · doi:10.1137/18M1210150
[83] Franović, I.; Yanchuk, S.; Eydam, S.; Bacic, I.; Wolfrum, M., Dynamics of a stochastic excitable system with slowly adapting feedback, Chaos, 30, 083109 (2020) · Zbl 1445.34071 · doi:10.1063/1.5145176
[84] Berner, R.; Sawicki, J.; Schöll, E., Birth and stabilization of phase clusters by multiplexing of adaptive networks, Phys. Rev. Lett., 124, 088301 (2020) · doi:10.1103/PhysRevLett.124.088301
[85] Vock, S.; Berner, R.; Yanchuk, S.; Schöll, E., Effect of diluted connectivities on cluster synchronization of adaptively coupled oscillator networks, Sci. Iran. D, 28, 1669 (2021) · doi:10.24200/sci.2021.57526.5284
[86] Daido, H., Generic scaling at the onset of macroscopic mutual entrainment in limit-cycle oscillators with uniform all-to-all coupling, Phys. Rev. Lett., 73, 760 (1994) · doi:10.1103/PhysRevLett.73.760
[87] Berner, R.; Fialkowski, J.; Kasatkin, D. V.; Nekorkin, V. I.; Yanchuk, S.; Schöll, E., Hierarchical frequency clusters in adaptive networks of phase oscillators, Chaos, 29, 103134 (2019) · Zbl 1425.34062 · doi:10.1063/1.5097835
[88] Omel’chenko, O. E.; Wolfrum, M.; Laing, C. R., Partially coherent twisted states in arrays of coupled phase oscillators, Chaos, 24, 023102 (2014) · Zbl 1345.34061 · doi:10.1063/1.4870259
[89] Stewart, I.; Golubitsky, M.; Pivato, M., Symmetry groupoids and patterns of synchrony in coupled cell networks, SIAM J. Appl. Dyn. Syst., 2, 609 (2003) · Zbl 1089.34032 · doi:10.1137/S1111111103419896
[90] Ashwin, P.; Swift, J. W., The dynamics of n weakly coupled identical oscillators, J. Nonlinear Sci., 2, 69 (1992) · Zbl 0872.58049 · doi:10.1007/BF02429852
[91] Ashwin, P.; Burylko, O.; Maistrenko, Y., Bifurcation to heteroclinic cycles and sensitivity in three and four coupled phase oscillators, Physica D, 237, 454 (2008) · Zbl 1178.34041 · doi:10.1016/j.physd.2007.09.015
[92] Ashwin, P.; Bick, C.; Burylko, O., Identical phase oscillator networks: Bifurcations, symmetry and reversibility for generalized coupling, Front. Appl. Math. Stat., 2, 7 (2016) · doi:10.3389/fams.2016.00007
[93] Sakaguchi, H.; Kuramoto, Y., A soluble active rotater model showing phase transitions via mutual entertainment, Prog. Theor. Phys, 76, 576 (1986) · doi:10.1143/PTP.76.576
[94] Delabays, R., Dynamical equivalence between Kuramoto models with first- and higher-order coupling, Chaos, 29, 113129 (2019) · Zbl 1427.34060 · doi:10.1063/1.5118941
[95] Skardal, P. S.; Arenas, A., Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching, Commun. Phys., 3, 218 (2020) · doi:10.1038/s42005-020-00485-0
[96] Kroma-Wiley, K. A.; Mucha, P. J.; Bassett, D. S.
[97] Hou, S. H., Classroom note: A simple proof of the Leverrier-Faddeev characteristic polynomial algorithm, SIAM Rev., 40, 706 (1998) · Zbl 0912.65035 · doi:10.1137/S003614459732076X
[98] Boyd, S.; Vandenberghe, L., Convex Optimization (2004), Cambridge University Press · Zbl 1058.90049
[99] Mormann, F.; Kreuz, T.; Andrzejak, R. G.; David, P.; Lehnertz, K.; Elger, C. E., Epileptic seizures are preceded by a decrease in synchronization, Epilepsy Res., 53, 173 (2003) · doi:10.1016/S0920-1211(03)00002-0
[100] Andrzejak, R. G.; Rummel, C.; Mormann, F.; Schindler, K., All together now: Analogies between chimera state collapses and epileptic seizures, Sci. Rep., 6, 23000 (2016) · doi:10.1038/srep23000
[101] Gerster, M.; Berner, R.; Sawicki, J.; Zakharova, A.; Skoch, A.; Hlinka, J.; Lehnertz, K.; Schöll, E., FitzHugh-Nagumo oscillators on complex networks mimic epileptic-seizure-related synchronization phenomena, Chaos, 30, 123130 (2020) · doi:10.1063/5.0021420
[102] Tass, P. A.; Adamchic, I.; Freund, H. J.; von Stackelberg, T.; Hauptmann, C., Counteracting tinnitus by acoustic coordinated reset neuromodulation, Restor. Neurol. Neurosci., 30, 137 (2012) · doi:10.3233/RNN-2012-110218
[103] Tass, P. A.; Popovych, O. V., Unlearning tinnitus-related cerebral synchrony with acoustic coordinated reset stimulation: Theoretical concept and modelling, Biol. Cybern., 106, 27 (2012) · doi:10.1007/s00422-012-0479-5
[104] Tass, P. A., A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations, Biol. Cybern., 89, 81 (2003) · Zbl 1084.92009 · doi:10.1007/s00422-003-0425-7
[105] Liesen, J.; Mehrmann, V., Linear Algebra (2015), Springer: Springer, Cham · Zbl 1334.15001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.