×

A coupling of Galerkin and mixed finite element methods for the quasi-static thermo-poroelasticity with nonlinear convective transport. (English) Zbl 1537.65143

The authors consider Galerkin and mixed finite element methods for the quasi-static thermo-poroelasticity problem with nonlinear convective transport. The problem is a nonlinear coupled problem with three subproblems, the energy balance equation for the temperature \(T\), the mass balance equation for the pressure \(p\), and the momentum balance equation for the displacement \(\textbf{u}\). A mixed element method is used for the pressure and Darcy velocity of the mass balance equation, a Galerkin finite element method is used for the temperature of the energy balance equation, and the elastic displacement of the momentum balance equation, separately. To linearize the nonlinear convective transport term in the energy conservation equation, the authors approximate \(\omega\cdot \nabla T\) as \(\omega^n \cdot \nabla T^{n+1}\), where \(\omega=-K\nabla p\) denotes the Darcy flux, \(n \geq 0\) is the time iteration index. Some suitable fully discrete finite element schemes are established. The stability is proved. Optimal error estimates are shown with an unconditional convergence. Using a comparison with a time-discrete system, these error estimates are proved without any time-step restriction. Some numerical tests are presented to check the accuracy and to show the efficiency of the proposed numerical methods.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
35M10 PDEs of mixed type
76S05 Flows in porous media; filtration; seepage
76E06 Convection in hydrodynamic stability
74F05 Thermal effects in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L05 Geophysical solid mechanics
74B20 Nonlinear elasticity
76M10 Finite element methods applied to problems in fluid mechanics
76M20 Finite difference methods applied to problems in fluid mechanics
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35Q35 PDEs in connection with fluid mechanics
35Q74 PDEs in connection with mechanics of deformable solids
Full Text: DOI

References:

[1] Brun, M. K.; Berre, I.; Nordbotten, J. M.; Radu, F. A., Upscaling of the coupling of hydromechanical and thermal processes in a quasi-static poroelastic medium. Transp. Porous Media, 1, 137-158 (2018)
[2] Brun, M. K.; Ahmed, E.; Nordbotten, J. M.; Radu, F. A., Well-posedness of the fully coupled quasi-static thermo-poro-elastic equations with nonlinear convective transport. J. Math. Anal. Appl., 239-266 (2019) · Zbl 1457.74055
[3] Brun, M. K.; Ahmed, E.; Berre, I.; Nordbotten, J. M.; Radu, F. A., Monolithic and splitting based solution schemes for fully coupled quasi-static thermo-poroelasticity with nonlinear convective transport. Comput. Math. Appl., 1964-1984 (2020) · Zbl 1451.74204
[4] Terzaghi, K., Theoretical Soil Mechanics (1943), Theoretical Soil Mechanics
[5] Biot, M. A.; Maurice, A., General theory of three-dimensional consolidation. J. Appl. Phys., 2, 155-164 (1941) · JFM 67.0837.01
[6] Biot, M. A., Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys., 2, 182-185 (1955) · Zbl 0067.23603
[7] Ewing, R.; Iliev, O.; Lazarov, R.a. A., On convergence of certain finite volume difference discretizations for 1D poroelasticity interface problems. Numer. Methods Partial Differential Equations, 3, 652-671 (2007) · Zbl 1142.74386
[8] Gaspar, F. J.; Lisbona, F. J.; Vabishchevich, P. N., Finite difference schemes for poro-elastic problems. Comput. Methods Appl. Math., 2, 132-142 (2002) · Zbl 1075.76600
[9] Booker, J. R.; Small, J. C., An investigation of the stability of numerical solutions of Biot’s equations of consolidation. Int. J. Solids Struct., 907-917 (1975) · Zbl 0311.73047
[10] Lewis, R. W.; Schrefler, B., A fully coupled consolidation model of the subsidence of venice. Water Resour. Res., 2, 223-230 (1978)
[11] Lewis, R. W.; Schrefler, B., The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media (1998) · Zbl 0935.74004
[12] Masters, I.; Pao, W. K.S.; Lewis, R. W., Coupling temperature to a double-porosity model of deformable porous media. Internat. J. Numer. Methods Engrg., 3, 421-438 (2000) · Zbl 0972.74066
[13] Niu, C.; Rui, H.; Sun, M., A coupling of hybrid mixed and continuous Galerkin finite element methods for poroelasticity. Appl. Math. Comput., 767-784 (2019) · Zbl 1428.74212
[14] Niu, C.; Rui, H.; Hu, X., A coupling of hybrid mixed and continuous Galerkin finite element methods for poroelasticity. Comput. Geosci., 757-774 (2021) · Zbl 1460.65125
[15] Kolesov, A. E.; Vabishchevich, P. N.; VasilyEva, M., Splitting schemes for poroelasticity and thermoelasticity problems. Comput. Math. Math. Phys., 12, 1305-1315 (2014)
[16] Kim, J., Unconditionally stable sequential schemes for all-way coupled thermoporomechanics: Undrained-adiabatic and extended fixed-stress splits. Comput. Methods Appl. Mech. Engrg., 2 (2018) · Zbl 1440.74126
[17] Zhang, J.; Rui, H., Galerkin method for the fully coupled quasi-static thermo-poroelastic problem. Comput. Math. Appl., 95-109 (2022) · Zbl 1524.76481
[18] Chen, Y.; Ge, Z., Multiphysics finite element method for quasi-static thermo-poroelasticity. J. Sci. Comput., 2 (2022) · Zbl 1494.74075
[19] Li, B.; Sun, W., Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model., 3, 622-633 (2012) · Zbl 1281.65122
[20] Li, B.; Sun, W., Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal., 4, 1959-1977 (2013) · Zbl 1311.76067
[21] Wang, J.; Si, Z.; Sun, W., A new error analysis of characteristics-mixed FEMs for miscible displacement in porous media. SIAM J. Numer. Anal., 6, 3200-3223 (2014)
[22] Sun, W.; Wu, C., New analysis of Galerkin-mixed FEMs for incompressible miscible flow in porous media (2020)
[23] Sun, W., New analysis and recovery technique of mixed FEMs for compressible miscible displacement in porous media. Numer. Math., 1, 179-215 (2022) · Zbl 1491.65101
[24] Raviart, P.; Thomas, J., A mixed finite element method for 2nd order elliptic problems. Math. Aspects Finite Element Methods, Lect. Not. Math, 292-315 (1977) · Zbl 0362.65089
[25] Thomée, T., Galerkin Finite Element Methods for Parabolic Problems (1997), Springer-Verkag Berkub Geudekberg · Zbl 0884.65097
[26] Chen, Y. Z.; Wu, L. C., Second Order Elliptic Equations and Elliptic Systems. Transl. From the Chinese by Bei Hu (1998), American Mathematical Society · Zbl 0902.35003
[27] Brezzi, F., On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, R-2, 129-151 (1974) · Zbl 0338.90047
[28] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods (1994) · Zbl 0804.65101
[29] Durán, R., Error analysis in \(L^p, 1 \leq p \leq \infty \), for mixed finite element methods for linear and quasi-linear elliptic problems. ESAIM Math. Model. Numer. Anal., 3, 371-387 (1988) · Zbl 0698.65060
[30] Raviart, P. A.; Thomas, J. M., A Mixed Finite Element Method for 2-nd Order Elliptic Problems, Vol. 606, 292-315 (1977), Springer-Verlag · Zbl 0362.65089
[31] Thomée, V., Galerkin Finite Element Methods for Parabolic Problems (1997), Springer-Verlag · Zbl 0884.65097
[32] Wheeler, M., A priori \(L^2\) error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal., 723-759 (1973) · Zbl 0232.35060
[33] Douglas, J.; Ewing, R.; Wheeler, M., The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO. Anal. Numér., 1, 17-33 (1983) · Zbl 0516.76094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.