×

A coupling of hybrid mixed and continuous Galerkin finite element methods for poroelasticity. (English) Zbl 1428.74212

Summary: A coupling finite element method for Biot’s model in poroelasticity is considered. The method is based on a coupling of a hybrid mixed finite element method for the pressure and velocity of the fluid phase with a continuous Galerkin finite element method for the displacement of the solid phase. The subproblem for pressure and Darcy velocity are solved at element level and these variables are eliminated in favor of the Lagrange multiplier, identified as pressure trace at the element interfaces. The method is consistent and locally mass conservative. By introducing the energy norm, we can obtain the stability of this system. The optimal error estimates are derived for both semi discrete and fully discrete schemes. Finally, numerical results illustrate the accuracy of the method.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76M10 Finite element methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
Full Text: DOI

References:

[1] Terzaghi, K., Erdbaumechanik auf Bodenphysikalischer Grundlage (1925), Duticke F.: Duticke F. Vienna · JFM 51.0655.07
[2] Biot, M. A., Theory of elasticity and consolidation for a porous anisotropic solid, J. Appl. Phys., 26, 2, 182-185 (1955) · Zbl 0067.23603
[3] Biot, M. A., General solutions of the equations of elasticity and consolidation for a porous material, J. Appl. Mech., 23, 1, 91-106 (1956) · Zbl 0074.19101
[4] Lewis, R. W.; Schrefler, B. A., The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media (1998), John Wiley and Sons: John Wiley and Sons Chichester · Zbl 0935.74004
[5] A. Settari, D.A. Walters, Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction, Houston, TX, 1999. Feb. Technical Report, 14-27; A. Settari, D.A. Walters, Advances in coupled geomechanical and reservoir modeling with applications to reservoir compaction, Houston, TX, 1999. Feb. Technical Report, 14-27
[6] Behie, G. A.; Settari, A.; Walters, D. A., Use of coupled reservoir and geomechanical modeling for integrated reservoir analysis and management, Proceedings of the Canadian International Petroleum Conference 2000 (2000), Calgary, Alberta: Calgary, Alberta Canada
[7] Detournay, E.; Cheng, A. H.D., Poroelastic response of a borehole in a non-hydrostatic stress field, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 25, 3, 171-182 (1988)
[8] Garagash, D.; Detournay, E., An analysis of the influence of the pressurization rate on the borehole breakdown pressure, Internat. J. Solids Struct., 34, 24, 3099-3118 (1997) · Zbl 0939.74569
[9] Rajapakse, R., Stress analysis of borehole in poroelastic medium, J. Eng. Mech., 119, 6, 1205-1227 (1993)
[10] Wang, Y.; Dusseault, M. B., A coupled conductive-convective thermo-poroelastic solution and implications for wellbore stability, J. Pet. Sci. Eng., 38, 3, 187-198 (2003)
[11] Chen, G. J., Consolidation of multilayered half space with anisotropic permeability and compressible constituents, Int J Solids Struct., 41, 1567-1586 (2004)
[12] Cheung, Y. K.; Tham, L. G., Numerical solutions for biot’s consolidation of layered soil, J. Eng. Mech. Div. ASCE, 109, 669-679 (1983)
[13] Morris, J. P., Injection and Reservoir Hazard Management the role of Injection-Induced Mechanical Deformation and Geochemical Alteration at in Salah CO2 Storage Project (2009), Lawrence Livermore National Laboratory: Lawrence Livermore National Laboratory Livermore, California 94551
[14] Morris, J. P., Simulations of injection-induced mechanical deformation, a study of the in salah \(CO_2\) storage project, SEG 2009 Summer Research Work CO2 Seq Geophy, 23-37 (2009), Banff: Banff Canada
[15] Hudson, J. A.; Stephansson, O.; Andersson, J., Coupled t-h-m issues relating to radioactive waste repository design and performance, Int. J. Rock Mech. Min. Sci., 38, 1, 143-161 (2001)
[16] Kim, J. M.; Parizek, R. R., Numerical simulation of the Noordbergum effect resulting from groundwater pumping in a layered aquifer system, J. Hydrol., 202, 1, 231-243 (1997)
[17] Weinstein, T.; Bennethum, L. S., On the derivation of the transport equation for swelling porous materials with finite deformation, Int. J. Eng. Sci., 44, 18, 1408-1422 (2006) · Zbl 1213.74122
[18] Simon, B. R.; Kaufmann, M. V.; McAfee, M. A.; Baldwin, A. L., Finite element models for arterial wall mechanics, ASME J. Biomech. Eng., 115, 489-496 (1993)
[19] Mak, A. F.T.; Huang, L. D.; Wang, Q. Q., A biphasic poroelastic analysis of the flow dependent subcutaneous tissue pressure and compaction due to epidermal loadings-issues in pressure sore, ASME J. Biomech. Eng., 116, 421-429 (1994)
[20] Yang, M.; Taber, L. A., The possible role of poroelasticity in the apparent viscoelastic behavior of passive cardia muscle, J. Biomech., 2, 587-597 (1991)
[21] Mow, V. C.; Kwan, M. K.; Lai, W. M.; Holmes, M. H., A finite deformation theory for nonlinearly permeable soft hydrated biological soft tissues, (Schmid-Schonbein, G. W., Frontiers in Biomechanics (1986), Springer-Verlag: Springer-Verlag New York), 153-179
[22] Smillie, A.; Sobey, I.; Molnar, Z., A hydroelastic model of hydrocephalus, J. Fluid Mech., 539, 417-443 (2005) · Zbl 1076.74040
[23] Swan, C. C.; Lakes, R. S.; Brand, R. A., Micromechanically based poroelastic modeling of fluid flow in haversian bone, J. Biomech. Eng., 125, 1, 25-37 (2003)
[24] Cowin, S. C.; Doty, S. B., Tissue Mechanics (2007), Springer Science and Business Media · Zbl 1117.74002
[25] Terzaghi, K., Theoretical Soil Mechanics (1943), Wiley
[26] Barry, S. I.; Mercer, G. N., Exact solutions for two-dimensional time-dependent flow and deformation within a poroelastic medium, J. Appl. Mech., 66, 2, 536-540 (1999)
[27] X. Feng, Z. Ge, Y. Li, Multiphysics finite element methods for a poroelasticity model[j], 2014. arXiv:1411.7464; X. Feng, Z. Ge, Y. Li, Multiphysics finite element methods for a poroelasticity model[j], 2014. arXiv:1411.7464
[28] R.W. Lewis, B.A. Schrefler, The Finite Element Method in the Deformation and Consolidation of Porous Media, Society for Industrial and Applied Mathematics, 1987. https://epubs.siam.org/doi/10.1137/1031039; R.W. Lewis, B.A. Schrefler, The Finite Element Method in the Deformation and Consolidation of Porous Media, Society for Industrial and Applied Mathematics, 1987. https://epubs.siam.org/doi/10.1137/1031039 · Zbl 0935.74004
[29] Korsawe, J.; Starke, G.; Wang, W., Finite element analysis of poro-elastic consolidation in porous media: standard and mixed approaches, Comput. Methods Appl. Mech. Eng., 195, 9, 1096-1115 (2006) · Zbl 1177.76199
[30] Liu, R., Discontinuous Galerkin finite element solution for poromechnics, Ph.D. thesis (2004), University of Texas at Austin
[31] Korsawe, J.; Starke, G., A least-squares mixed finite element method for biot’s consolidation problem in porous media, SIAM J. Numer. Anal., 43, 1, 318-339 (2005) · Zbl 1086.76041
[32] Lemoine, G. I.; Ou, M. Y., Finite volume modeling of poroelastic-fluid wave propagation with mapped grids, SIAM J. Sci. Comput., 36, 3, B396-B426 (2014) · Zbl 1299.76160
[33] Brown, D. L.; Vasilyeva, M., A generalized multiscale finite element method for poroelasticity problems i: linear problems, J. Comput. Appl. Math., 294, 372-388 (2016) · Zbl 1330.74151
[34] Cao, Y.; Chen, S.; Meir, A. J., Analysis and numerical approximations of equations of nonlinear poroelasticity, Discrete Contin. Dyn. Syst. Ser. B, 18, 1253-1273 (2013) · Zbl 1277.35020
[35] Cao, Y.; Chen, S.; Meir, A. J., Quasilinear poroelasticity: analysis and hybrid finite element approximation, Numer. Methods Partial Differ. Equ., 31, 4, 1174-1189 (2015) · Zbl 1329.74271
[36] Phillips, P. J.; Wheeler, M. F., A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: The continuous in time case, Comput. Geosci., 11, 131-144 (2007) · Zbl 1117.74015
[37] Phillips, P. J.; Wheeler, M. F., A coupling of mixed and discontinuous Galerkin finite element methods for poroelasticity, Comput. Geosci., 12, 417-435 (2008) · Zbl 1155.74048
[38] Sun, M.; Rui, H., A coupling of weak galerkin and mixed finite element methods for poroelasticity, Comput. Math. Appl., 73, 804-823 (2017) · Zbl 1369.76028
[39] Yi, S. Y., A coupling of nonconforming and mixed finite element methods for biot’s consolidation model, Numer. Methods Partial Differ. Equ., 1750-1777 (2013) · Zbl 1274.74455
[40] Hu, X.; Rodrigo, C.; Gaspar, F. J., A nonconforming finite element method for the biot’s consolidation model in poroelasticity[j], J. Comput. Appl. Math., 310, 143-154 (2017) · Zbl 1381.76175
[41] Brezzi, F.; Fortin, M., Mixed and Hybrid Finite Element Methods (1991), Springer: Springer New York · Zbl 0788.73002
[42] Pian, T. H.H.; Tong, P., Basis of finite element methods for solid continua, Int. J. Numer. Methods. Eng., 1, 3-28 (1969) · Zbl 0252.73052
[43] Arnold, D. N.; Brezzi, F., Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, M2AN Math. Model. Numer. Anal., 19, 7-32 (1985) · Zbl 0567.65078
[44] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed and conforming Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal., 47, 1319-1365 (2009) · Zbl 1205.65312
[45] Nguyen, N. C.; Peraire, J.; Cockburn, B., A hybridizable discontinuous Galerkin method for stokes flow[j], Comput. Methods Appl. Mech. Eng., 199, 9, 582-597 (2010) · Zbl 1227.76036
[46] Zhang, J.; Zhu, J.; Zhang, R., A combined discontinuous Galerkin finite element method for miscible displacement problem[j], J. Comput. Appl. Math., 309, 44-55 (2017) · Zbl 1347.65150
[47] Lipnikov, K., Numerical methods for the Biot model in poroelasticity, Ph.D. thesis (2002), University of Houston
[48] Egger, H.; Schoberl, J., A hybrid mixed discontinuous Galerkin finite-element method for convection-diffusion problems, IMA J. Numer. Anal., 30, 1206-1234 (2010) · Zbl 1204.65133
[49] Raviart, P. A.; Thomas, J. M., A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of Finite Element Methods, Lecture Notes in Math, vol. 606, 292-315 (1977), Springer Verlag: Springer Verlag Berlin and New York · Zbl 0362.65089
[50] Nedelec, J. C., Mixed finite element in r3, Numer. Math., 35, 315-341 (1980) · Zbl 0419.65069
[51] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods (1994), Springer, Berlin Heidelberg: Springer, Berlin Heidelberg New York · Zbl 0804.65101
[52] Brenner, S. C.; Scott, L. R., The Mathematical Theory of Finite Element Methods (2002), Springer: Springer New York · Zbl 1012.65115
[53] Toselli, A.; Widlund, O., Domain Decomposition Methods : Algorithms and Theory (2005), Springer: Springer Berlin · Zbl 1069.65138
[54] Wheeler, M. F., A priori l2 error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal., 10, 723-759 (1973) · Zbl 0232.35060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.