×

Root repulsion and faster solving for very sparse polynomials over \(p\)-adic fields. (English) Zbl 1498.11241

Summary: For any fixed field \(K \in \{\mathbb{Q}_2, \mathbb{Q}_3, \mathbb{Q}_5, \ldots \}\), we prove that all univariate polynomials \(f\) with exactly 3 (resp. 2) monomial terms, degree \(d\), and all coefficients in \(\{\pm 1, \ldots, \pm H \}\), can be solved over \(K\) within deterministic time \(\log^{4 + o (1)}(d H) \log^3 d\) (resp. \(\log^{2 + o (1)}(d H))\) in the classical Turing model: Our underlying algorithm correctly counts the number of roots of \(f\) in \(K\), and for each such root generates an approximation in \(\mathbb{Q}\) with logarithmic height \(O(\log^2(d H) \log d)\) that converges at a rate of \(O ((1 / p)^{2^i})\) after \(i\) steps of Newton iteration. We also prove significant speed-ups in certain settings, a minimal spacing bound of \(p^{- O (p \log_p^2 (d H) \log d)}\) for distinct roots in \(\mathbb{C}_p\), and even stronger root repulsion when there are nonzero degenerate roots in \(\mathbb{C}_p\): \(p\)-adic distance \(p^{- O (\log_p (d H))}\). On the other hand, we prove that there is an explicit family of tetranomials with distinct nonzero roots in \(\mathbb{Z}_p\) indistinguishable in their first \(\Omega(d \log_p H)\) most significant base-\(p\) digits. So speed-ups for \(t\)-nomials with \(t \geq 4\) will require evasion or amortization of such worst-case instances.

MSC:

11Y16 Number-theoretic algorithms; complexity
11S05 Polynomials

References:

[1] Adleman, Leonard; Manders, Kenneth; Miller, Gary, On taking roots in finite fields, (18th Annual Symposium on Foundations of Computer (1977), Science: Science Providence, R.I.), 175-178 (1977), IEEE
[2] Arora, Sanjeev; Barak, Boaz, Computational Complexity. A Modern Approach (2009), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1193.68112
[3] Avendaño, Martín; Ibrahim, Ashraf; Rojas, J. Maurice; Rusek, Korben, Faster p-adic feasibility for certain multivariate sparse polynomials, J. Symb. Comput., 47, 4, 454-479 (2012) · Zbl 1246.65078
[4] Avendaño, Martín; Kogan, Roman; Nisse, Mounir; Rojas, J. Maurice, Metric estimates and membership complexity for Archimedean amoebae and tropical hypersurfaces, J. Complex., 46, 45-65 (2018) · Zbl 1420.14135
[5] Avendaño, Martín; Martín-Morales, Jorge, Bivariate trinomials over finite fields, Houst. J. Math. (2022), in press
[6] Avendaño, Martín; Krick, Teresa, Sharp bounds for the number of roots of univariate fewnomials, J. Number Theory, 131, 7, 1209-1228 (2011) · Zbl 1225.11150
[7] Bach, Eric; Shallit, Jeffrey, Algorithmic Number Theory, Volume 1: Efficient Algorithms (1996), MIT Press: MIT Press Cambridge, Massachusetts · Zbl 0873.11070
[8] Baker, A., Logarithmic forms and the abc-conjecture, (Number Theory. Number Theory, Eger, 1996 (1998), De Gruyter: De Gruyter Berlin), 37-44 · Zbl 0973.11047
[9] Balakrishnan, Jennifer; Dogra, Netan; Müller, J. Steffen; Tuitman, Jan; Vonk, Jan, Explicit Chabauty-Kim for the split Cartan modular curve of level 13, Ann. Math. (2), 189, 3, 885-944 (2019) · Zbl 1469.14050
[10] Bauch, Jens-Dietrich; Nart, Enric; Stainsby, Hayden D., Complexity of OM factorizations of polynomials over local fields, LMS J. Comput. Math., 16, 139-171 (2013) · Zbl 1343.11099
[11] Berthomieu, Jèrèmy; Lecerf, Grègoire; Quintin, Guillaume, Polynomial root finding over local rings and application to error correcting codes, Appl. Algebra Eng. Commun. Comput., 24, 413-443 (2013) · Zbl 1309.13034
[12] Bi, Jingguo; Cheng, Qi; Rojas, J. Maurice, Sub-linear root detection, and new hardness results, for sparse polynomials over finite fields, (Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation. Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, ISSAC ’13 (2013), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 61-68 · Zbl 1360.68916
[13] Boniface, Erick; Deng, Weixun; Rojas, J. Maurice, Near-optimal root spacing and faster solving for very sparse polynomials over \(\mathbb{R} (2022)\), arXiv
[14] Borwein, J. M.; Borwein, P. B., On the complexity of familiar functions and numbers, SIAM Rev., 30, 4, 589-601 (1988) · Zbl 0686.68029
[15] Canetti, Ran; Friedlander, John; Konyagin, Sergei; Larsen, Michael; Lieman, Daniel; Shparlinski, Igor, On the statistical properties of Diffie-Hellman distributions, Isr. J. Math., 120, 1, 23-46 (Dec 2000) · Zbl 0997.11066
[16] Cantor, David G.; Gordon, Daniel M., Factoring polynomials over ρ-adic fields, (Bosma, Wieb, Algorithmic Number Theory (2000), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 185-208 · Zbl 1006.11066
[17] Cantor, David G.; Kaltofen, Erich, On fast multiplication of polynomials over arbitrary algebras, Acta Inform., 28, 7, 693-701 (1991) · Zbl 0766.68055
[18] Cao, Zhengjun; Sha, Qian; Fan, Xiao, Adleman-Manders-Miller root extraction method revisited, (Information Security and Cryptology. Information Security and Cryptology, Lecture Notes in Comput. Sci., vol. 7537 (2012), Springer: Springer Heidelberg), 77-85 · Zbl 1292.94044
[19] Cheng, Qi, Primality proving via one round in ECPP and one iteration in AKS, J. Cryptol., 20, 3, 375-387 (July 2007) · Zbl 1155.11362
[20] Cheng, Qi; Gao, Shuhong; Rojas, J. Maurice; Wan, Daqing, Sparse univariate polynomials with many roots over finite fields, Finite Fields Appl., 46, 235-246 (2017) · Zbl 1406.11121
[21] Hwa Cho, Gook; Kwon, Soonhak; Lee, Hyang-Sook, A refinement of Müller’s cube root algorithm, Finite Fields Appl., 67, Article 101708 pp. (2020) · Zbl 1473.11217
[22] Conrad, Keith, Notes on Hensel’s Lemma (2021), downloadable from
[23] Costa, Edgar; Harvey, David; Kedlaya, Kiran S., Zeta functions of nondegenerate hypersurfaces in toric varieties via controlled reduction in p-adic cohomology, (Proceedings of the Thirteenth Algorithmic Number Theory Symposium. Proceedings of the Thirteenth Algorithmic Number Theory Symposium, Open Book Ser., vol. 2 (2019), Math. Sci. Publ.: Math. Sci. Publ. Berkeley, CA), 221-238 · Zbl 1520.14095
[24] Dadush, Daniel; Peikert, Chris; Vempala, Santosh, Enumerative lattice algorithms in any norm via M-ellipsoid coverings, (2011 IEEE 52nd Annual Symposium on Foundations of Computer Science. 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011 (2011), IEEE Computer Soc.: IEEE Computer Soc. Los Alamitos, CA), 580-589 · Zbl 1292.68091
[25] De, Anindya; Kurur, Piyush P.; Saha, Chandan; Saptharishi, Ramprasad, Fast integer multiplication using modular arithmetic, SIAM J. Comput., 42, 2, 685-699 (2013) · Zbl 1271.68247
[26] Dumas, Gustave, Sur quelques cas d’irréductibilité des polynômes à coefficients rationnels, J. Math. Pures Appl., 2, 6, 191-258 (1906) · JFM 37.0096.01
[27] Dwivedi, Ashish; Mittal, Rajat; Saxena, Nitin, Counting basic-irreducible factors mod \(p^k\) in deterministic poly-time and p-adic applications, (34th Computational Complexity Conference. 34th Computational Complexity Conference, LIPIcs. Leibniz Int. Proc. Inform., vol. 137 (2019), Schloss Dagstuhl. Leibniz-Zent. Inform.: Schloss Dagstuhl. Leibniz-Zent. Inform. Wadern), 15, 29 · Zbl 07564415
[28] Fairchild, Elliot; Goldstein, Joshua; Rojas, J. Maurice, Trinomials with Tightly Packed p-Adic Roots (2022), Texas A&M University, in preparation
[29] Gel’fand, Israel M.; Kapranov, Misha M.; Zelevinsky, Andrei V., Discriminants, Resultants, and Multidimensional Determinants. Mathematics: Theory & Applications (1994), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA · Zbl 0827.14036
[30] Guàrdia, Jordi; Nart, Enric; Pauli, Sebastian, Single-factor lifting and factorization of polynomials over local fields, J. Symb. Comput., 47, 11, 1318-1346 (2012) · Zbl 1262.11106
[31] Harvey, David; van der Hoeven, Joris, Polynomial multiplication over finite fields in time \(O(n \log n) (2019)\), HAL preprint · Zbl 1423.12010
[32] Harvey, David; van der Hoeven, Joris, Integer multiplication in time \(O(n \log n)\), Ann. Math. (2), 193, 2, 563-617 (2021) · Zbl 1480.11162
[33] Hua, Loo-Keng; Vandiver, H. S., On the number of solutions of some trinomial equations in a finite field, Proc. Natl. Acad. Sci. USA, 35, 477-481 (1949) · Zbl 0034.01302
[34] Kedlaya, Kiran; Umans, Christopher, Fast polynomial factorization and modular composition, (Bro Miltersen, Peter; Reischuk, Rüdiger; Schnitger, Georg; van Melkebeek, Dieter, Computational Complexity of Discrete Problems, Dagstuhl Seminar Proceedings, Number 08381. Computational Complexity of Discrete Problems, Dagstuhl Seminar Proceedings, Number 08381, Dagstuhl, Germany, 2008 (2008), Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik Germany) · Zbl 1333.11117
[35] Kelley, Zander, Roots of sparse polynomials over a finite field, LMS J. Comput. Math., 19, A, 196-204 (2016) · Zbl 1391.11154
[36] Kelley, Zander; Owen, Sean W., Estimating the number of roots of trinomials over finite fields, J. Symb. Comput., 79, 108-118 (2017), SI: MEGA 2015 · Zbl 1382.11089
[37] Koiran, Pascal, Root separation for trinomials, J. Symb. Comput., 95, 151-161 (2019) · Zbl 1429.30009
[38] Koiran, Pascal; Portier, Natacha; Tavenas, Sébastien, A Wronskian approach to the real τ-conjecture, J. Symb. Comput., 68, part 2, 195-214 (2015) · Zbl 1302.68331
[39] Kopp, Leann; Randall, Natalie; Maurice Rojas, J.; Zhu, Yuyu, Randomized polynomial-time root counting in prime power rings, Math. Comput., 89, 321, 373-385 (January 2020) · Zbl 1446.11218
[40] Lenstra, Hendrik W., On the factorization of lacunary polynomials, Number Theory Prog., 1, 277-291 (1999) · Zbl 0943.11047
[41] Mahler, Kurt, An inequality for the discriminant of a polynomial, Mich. Math. J., 11, 3, 257-262 (1964) · Zbl 0135.01702
[42] Mignotte, Maurice, On the distance between the roots of a polynomial, Appl. Algebra Eng. Commun. Comput., 6, 327-332, 11 (1995) · Zbl 0835.12002
[43] Ostrowski, Alexandre, Recherches sur la méthode de Graeffe et les zéros des polynomes et des séries de Laurent, Acta Math., 72, 99-155 (1940) · Zbl 0023.33403
[44] Papadimitriou, Christos H., Computational Complexity (1995), Addison-Wesley · Zbl 0833.68049
[45] Phillipson, Kaitlyn; Rojas, J. Maurice, Fewnomial systems with many roots, and an adelic tau conjecture, (Tropical and Non-Archimedean Geometry. Tropical and Non-Archimedean Geometry, Contemp. Math., vol. 605 (2013), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 45-71 · Zbl 1320.13035
[46] Poonen, Bjorn, Zeros of sparse polynomials over local fields of characteristic p, Math. Res. Lett., 5, 3, 273-279 (1998) · Zbl 0931.11053
[47] Poonen, Bjorn, Using zeta functions to factor polynomials over finite fields, (Arithmetic Geometry: Computation and Applications. Arithmetic Geometry: Computation and Applications, Contemp. Math., vol. 722 (2019), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 141-147 · Zbl 1468.11247
[48] Rahman, Q. I.; Schmeisser, G., Analytic Theory of Polynomials, London Mathematical Society Monographs. New Series, vol. 26 (2002), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press Oxford · Zbl 1072.30006
[49] Robert, Alain M., A Course in p-adic Analysis (2000), Springer-Verlag: Springer-Verlag New York · Zbl 0947.11035
[50] Rojas, J. Maurice; Zhu, Yuyu, A complexity chasm for solving univariate sparse polynomial equations over p-adic fields, (Proceedings of the 2021 International Symposium on Symbolic and Algebraic Computation. Proceedings of the 2021 International Symposium on Symbolic and Algebraic Computation, ISSAC ’21 (2021), Association for Computing Machinery: Association for Computing Machinery New York, NY, USA), 337-344
[51] Rouse, Jeremy; Sutherland, Andrew V.; Zureick-Brown, David, ℓ-adic images of Galois for elliptic curves over \(\mathbb{Q} (2021)\)
[52] Sagraloff, Michael, A near-optimal algorithm for computing real roots of sparse polynomials, (39th International Symposium on Symbolic and Algebraic Computation. 39th International Symposium on Symbolic and Algebraic Computation, ISSAC 2014 (2014)), 359-366 · Zbl 1325.65068
[53] Schikhof, W. H., Ultrametric Calculus, Cambridge Studies in Advanced Mathematics, vol. 4 (2006), Cambridge University Press: Cambridge University Press Cambridge, An introduction to p-adic analysis, reprint of the 1984 original, MR0791759 · Zbl 1152.26025
[54] Serre, J.-P., A Course in Arithmetic, Graduate Texts in Mathematics, vol. 7 (1973), Springer-Verlag: Springer-Verlag New York-Heidelberg, translated from the French · Zbl 0256.12001
[55] Shoup, Victor, On the deterministic complexity of factoring polynomials over finite fields, Inf. Process. Lett., 33, 5, 261-267 (1990) · Zbl 0696.68072
[56] Shparlinski, Igor, On finding primitive roots in finite fields, Theor. Comput. Sci., 157, 2, 273-275 (1996) · Zbl 0871.11091
[57] Smale, Steve, Newton’s method estimates from data at one point, (The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics. The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics, Laramie, Wyo., 1985 (1986), Springer: Springer New York), 185-196 · Zbl 0613.65058
[58] Andrew V. Sutherland, Lecture notes for Math 18.783 (elliptic curves), Lecture #3, February 24, 2021.
[59] (Turnbull, H. W., The Correspondence of Isaac Newton, Vol. II: 1676-1687 (1960), Cambridge University Press: Cambridge University Press New York), published for the Royal Society · Zbl 1170.01011
[60] von zur Gathen, Joachim; Gerhard, Jürgen, Modern Computer Algebra (2013), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1277.68002
[61] von zur Gathen, Joachim; Hartlieb, Silke, Factoring modular polynomials, J. Symb. Comput., 26, 583-606 (1998) · Zbl 0913.11050
[62] Weil, André, Numbers of solutions of equations in finite fields, Bull. Am. Math. Soc., 55, 5, 497-508 (May 1949) · Zbl 0032.39402
[63] Weiss, Edwin, Algebraic Number Theory, International Series in Pure and Applied Mathematics (1963), McGraw-Hill · Zbl 0115.03601
[64] Yu, Kunrui, Linear forms in p-adic logarithms III, Compos. Math., 3, 241-276 (1994) · Zbl 0819.11025
[65] Yu, Kunrui, p-adic logarithmic forms and group varieties. III, Forum Math., 19, 2, 187-280 (2007) · Zbl 1132.11038
[66] Zhu, Yuyu, Trees, Point Counting Beyond Fields, and Root Separation (May 2020), Texas A&M University, PhD thesis, doctoral dissertation, TAMU 3368, College Station, TX 77843-3368
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.