×

Faster polynomial multiplication over finite fields using cyclotomic coefficient rings. (English) Zbl 1423.12010

The main result of the paper is an algorithm for multiplication in \(\mathbb{F}_p [X]\) whose complexity in the deterministic multitape Turing model is better than that of the published algorithms.
For positive real \(x\), let \(\log^* x\) denote the least non-negative integer \(k\) such that \(\log (\ldots \log (x)) \le 1\) (\(k\) iterations). For a positive integer \(n\) one puts \(\lg n =\max (0, \lceil \log_2 n \rceil)\). The best current bound for the number of bit operations required to multiply two \(n\)-bits integers is \(O\left(n\lg n K_\mathbb{Z}^{\log^* n} \right)\), where \(K_\mathbb{Z}=4\).
Theorem 1.1 of the paper under review asserts that the multiplication of polynomials in \(\mathbb{F}_p [X]\) of degree less than \(n\) can be achieved in \(O\left(n\lg p \lg (n\lg p) 4^{\max (0, \log^* n -\log^* p)} K_\mathbb{Z}^{\log^* p}\right)\) bit operations, uniformly for all positive \(n\) and all primes \(p\).
This bound is obtained by converting the initial multiplication in \(\mathbb{F}_p [X]\) to a bivariate multiplication problem in \(\mathbb{F}_p [Y,Z]/(\Phi_\alpha (Y), Z^m-1)\), with \(\alpha\), \(m\) coprime integers (not necessarily prime) such that \(\alpha m=N>n\), and \(\Phi_\alpha\) a cyclotomic polynomial. The bulk of the work is to show how to choose \(\alpha\), \(m\), and \(N\) such that all the following conditions hold: \(N\) is not much larger than \(n\); \(\deg (\Phi_\alpha)\) is not much smaller than \(n\); the ring \(\mathbb{F}_p [Y]/(\Phi_\alpha)\) contains a primitive \(m\)th root of unity; \(m\) is a product of many integers that are exponentially smaller than \(n\); \(\alpha\) is exponentially smaller than \(n\).
The resulting algorithm is of theoretical interest rather than a practical one. Possible variations on the main result in different complexity models or for various polynomial rings are also mentioned. Despite its technicality, the paper is a nice reading, thanks to detailed explanations for all choices made for the implementation of the ideas.

MSC:

12Y05 Computational aspects of field theory and polynomials (MSC2010)
68W30 Symbolic computation and algebraic computation
65Y20 Complexity and performance of numerical algorithms
11C08 Polynomials in number theory
65T60 Numerical methods for wavelets
11T06 Polynomials over finite fields
13M10 Polynomials and finite commutative rings
13F20 Polynomial rings and ideals; rings of integer-valued polynomials
68Q17 Computational difficulty of problems (lower bounds, completeness, difficulty of approximation, etc.)
68W40 Analysis of algorithms

References:

[1] Adleman, L. M.; Pomerance, C.; Rumely, R. S., On distinguishing prime numbers from composite numbers, Ann. of Math. (2), 117, 1, 173-206 (1983) · Zbl 0526.10004
[2] Agarwal, R.; Cooley, J., New algorithms for digital convolution, IEEE Trans. Acoust. Speech Signal Process., 25, 5, 392-410 (1977) · Zbl 0413.65087
[3] Baker, R. C.; Harman, G.; Pintz, J., The difference between consecutive primes. II, Proc. Lond. Math. Soc. (3), 83, 3, 532-562 (2001) · Zbl 1016.11037
[4] Bluestein, L. I., A linear filtering approach to the computation of discrete Fourier transform, IEEE Trans. Audio Electroacoust., 18, 4, 451-455 (1970)
[5] Bostan, A.; Gaudry, P.; Schost, É., Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator, SIAM J. Comput., 36, 6, 1777-1806 (2007) · Zbl 1210.11126
[6] Bürgisser, P.; Clausen, M.; Shokrollahi, M. A., (Algebraic complexity theory. Algebraic complexity theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 315 (1997), Springer-Verlag: Springer-Verlag Berlin), xxiv+618, With the collaboration of Thomas Lickteig · Zbl 1087.68568
[7] Cantor, D. G.; Kaltofen, E., On fast multiplication of polynomials over arbitrary algebras, Acta Inform., 28, 7, 693-701 (1991) · Zbl 0766.68055
[8] Fürer, M., Faster integer multiplication, (STOC’07—Proceedings of the 39th Annual ACM Symposium on Theory of Computing (2007), ACM, New York), 57-66 · Zbl 1179.68198
[9] Fürer, M., Faster integer multiplication, SIAM J. Comput., 39, 3, 979-1005 (2009) · Zbl 1192.68926
[10] von zur Gathen, J.; Gerhard, J., Modern Computer Algebra, xiv+795 (2013), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1277.68002
[11] Good, I. J., The interaction algorithm and practical Fourier analysis, J. R. Stat. Soc. Ser. B Stat. Methodol., 20, 361-372 (1958) · Zbl 0086.12403
[12] D. Harvey, J. van der Hoeven, Faster integer and polynomial multiplication using cyclotomic coefficient rings, 2017. https://arxiv.org/abs/171203693v1; D. Harvey, J. van der Hoeven, Faster integer and polynomial multiplication using cyclotomic coefficient rings, 2017. https://arxiv.org/abs/171203693v1
[13] Harvey, D.; Hoeven, J.v.d., Faster integer multiplication using short lattice vectors, (Scheidler, R.; Sorenson, J., Proceedings of the Thirteenth Algorithmic Number Theory Symposium. Proceedings of the Thirteenth Algorithmic Number Theory Symposium, Open Book Series 2 (2019), Mathematical Sciences Publishers, Berkeley), 293-310 · Zbl 07721131
[14] Harvey, D.; van der Hoeven, J.; Lecerf, G., Even faster integer multiplication, J. Complexity, 36, 1-30 (2016) · Zbl 1350.68145
[15] Harvey, D.; van der Hoeven, J.; Lecerf, G., Faster polynomial multiplication over finite fields, J. ACM, 63, 6 (2017), 52:1-52:23 · Zbl 1426.68310
[16] Papadimitriou, C. H., Computational Complexity, xvi+523 (1994), Addison-Wesley Publishing Company: Addison-Wesley Publishing Company Reading, MA · Zbl 0833.68049
[17] Prachar, K., Über die anzahl der teiler einer natürlichen zahl, welche die form \(p - 1\) haben, Monatsh. Math., 59, 91-97 (1955) · Zbl 0064.04107
[18] Schönhage, A., Schnelle Multiplikation von Polynomen über Körpern der Charakteristik 2, Acta Inform., 7, 4, 395-398 (1977) · Zbl 0362.65011
[19] Schönhage, A.; Strassen, V., Schnelle multiplikation grosser zahlen, Comput. (Arch. Elektron. Rechnen), 7, 281-292 (1971) · Zbl 0223.68007
[20] Shoup, V., On the deterministic complexity of factoring polynomials over finite fields, Inform. Process. Lett., 33, 5, 261-267 (1990) · Zbl 0696.68072
[21] Shoup, V., Searching for primitive roots in finite fields, Math. Comp., 58, 197, 369-380 (1992) · Zbl 0747.11060
[22] Thomas, L. H., Using computers to solve problems in physics, Appl. Digit. Comput., 458, 42-57 (1963)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.