×

Nonnegative solutions to time fractional Keller-Segel system. (English) Zbl 1470.35385

Summary: We establish the existence of nonnegative weak solutions to time fractional Keller-Segel system with Dirichlet boundary condition in a bounded domain with smooth boundary. Since the considered system has a cross-diffusion term and the corresponding diffusion matrix is not positive definite, we first regularize the system. Then under suitable assumptions on the initial conditions, we establish the existence of solutions to the system by using the Galerkin approximation method. The convergence of solutions is proved by means of compactness criteria for fractional partial differential equations. The nonnegativity of solutions is proved by the standard arguments. Furthermore, the existence of the weak solution to the system with Neumann boundary condition is discussed.

MSC:

35R11 Fractional partial differential equations
35B45 A priori estimates in context of PDEs
35D30 Weak solutions to PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
92C17 Cell movement (chemotaxis, etc.)
Full Text: DOI

References:

[1] KellerE, SegalL. Model of chemotaxis. J Theor Biol. 1971;30:225-234. · Zbl 1170.92307
[2] JagerW, LuckhausS. On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans Am Math Soc. 1992;329:819-824. · Zbl 0746.35002
[3] FujieK, YokotaT. Boundedness in a fully parabolic chemotaxis system with strongly singular sensitivity. Appl Math Lett. 2014;38:140-143. · Zbl 1354.92009
[4] HorstmannD, WangG. Blow‐up in a chemotaxis model without symmetry assumptions. Eur J Appl Math. 2001;12:159-177. · Zbl 1017.92006
[5] LankeitJ, WinklerM. A generalized solution concept for the Keller-Segel system with logarithmic sensitivity: global solvability for large nonradial data. Nonlinear Differ Equ Appl. 2017;49:1-33. · Zbl 1373.35166
[6] NagaiT, SenbaT, YoshidaK. Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis. Funkc Ekvacio. 1997;40:411-433. · Zbl 0901.35104
[7] OsakiK, YagiA. Finite dimensional attractors for one dimensional Keller-Segel equations. Funkc Ekvacioj. 2001;44:441-469. · Zbl 1145.37337
[8] WinklerM. Absence of collapse in a parabolic chemotaxis system with signal dependent sensitivity. Math Nachr. 2010;283:1664-1673. · Zbl 1205.35037
[9] WinklerM. Global solutions in a fully parabolic chemotaxis system with singular sensitivity. Math Meth Appl Sci. 2011;34:176-190. · Zbl 1291.92018
[10] WinklerM. Aggregation vs. global diffusive behavior in the higher‐dimensional Keller-Segel model. J Diff Equ. 2010;248:2889-2905. · Zbl 1190.92004
[11] GajewskiH, ZachariasK. Global behavior of a reaction-diffusion system modelling chemotaxis. Math Nachr. 1998;195:77-114. · Zbl 0918.35064
[12] SenbaT, SuzukiT. Parabolic system of chemotaxis: blowup in a finite and the infinite time. Methods Appl Anal. 2001;8:349-367. · Zbl 1056.92007
[13] HorstmannD, WinklerM. Boundedness vs blow‐up in a chemotaxis system. J Diff Equ. 2005;215:52-107. · Zbl 1085.35065
[14] BlanchetA, DolbeautJ, PerthameB. Two dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron J Differ Equ. 2006;44:1-32. · Zbl 1112.35023
[15] BilerP, CorriasL, DolbeaultJ. Large mass self‐similar solutions of the parabolic parabolic Keller-Segel model of chemotaxis. J Math Biol. 2011;63:1-32. · Zbl 1230.92011
[16] FujieK. Boundedness in a fully parabolic chemotaxis system with singular sensitivity. J Math Anal Appl. 2015;424:675-684. · Zbl 1310.35144
[17] GurusamyA, AndreHE, IndhurekhaE, BalachandraK. Existence of weak solutions to the Keller-Segel chemotaxis system with additional cross‐diffusion. Nonlinear Anal Real World Appl. 2020;54:103090. · Zbl 1436.35005
[18] HillenT, PotapovA. The one‐dimensional chemotaxis model: global existence and asymptotic profile. Math Meth Appl Sci. 2004;27:1783-1801. · Zbl 1081.92005
[19] TaoY. Global dynamics in a higher dimensional repulsion chemotaxis model with nonlinear sensitivity. Discrete Contin Dyn Syst Ser B. 2013;18:2705-2722. · Zbl 1282.35189
[20] YaoY. Asymptotic behavior for critical Patlak-Keller-Segel model and a repulsive-attractive aggregation equation. Ann Inst H Poincaré Anal Non Linéaire. 2014;31:81-101. · Zbl 1288.35094
[21] ViglialoroG. Very weak global solutions to a parabolic-parabolic chemotaxis system with logistic source. J Math Anal Appl. 2016;439:197-212. · Zbl 1386.35163
[22] ViglialoroG. Blow‐up time of a Keller-Segel type system with Neumann and Robin boundary conditions. Differ Integral Equ. 2016;29:359-376. · Zbl 1374.35217
[23] LiB, DongM. Global solutions in a quasilinear parabolic-parabolic chemotaxis system with decaying diffusivity and consumption of a chemoattractant. J Math Anal Appl. 2018;467:32-44. · Zbl 1396.35030
[24] ZhaoX, ZhengS. Global existence and boundedness of solutions to a chemotaxis system with singular sensitivity and logistic‐type source. J Diff Equ. 2019;267:826-865. · Zbl 1412.35177
[25] TaoX, ZhouS, DingM. Boundedness of solutions to a quasilinear parabolic-parabolic chemotaxis model with nonlinear signal production. J Math Anal Appl. 2019;474:733-747. · Zbl 1483.35111
[26] WinklerM. Global solvability and stabilization in a two‐dimensional cross‐diffusion system modeling urban crime propagation. Ann Inst H Poincaré Anal Non Liné,aire. 2019;36:1747-1790. · Zbl 1428.35611
[27] YanJ, LiY. Global generalized solutions to a Keller-Segel system with nonlinear diffusion and singular sensitivity. Nonlinear Anal. 2018;176:288-302. · Zbl 1401.35170
[28] CarrilloJA, HittmeirS, JüngelA, diffusionC. Cross diffusion and nonlinear diffusion preventing blow‐up in the Keller-Segel model. Math Models Methods Appl Sci. 2012;22:1250041. · Zbl 1263.35131
[29] GurusamyA, TyagiJ. Keller-Segel chemotaxis models: a review. Acta Appl Math. (Accepted). · Zbl 1464.35001
[30] BansalMK, LalS, KumarD, KumarS, SinghJ. Fractional differential equation pertaining to an integral operator involving incomplete H‐function in the kernel. Math Meth Appl Sci. 2020:1-12. https://doi.org/10.1002/mma.6670 · Zbl 07924827 · doi:10.1002/mma.6670
[31] LiuJG, YangXJ, FengYY, CuiP. On group analysis of the time fractional extended (2+1) dimensional Zakharov-Kuznetsov equation in quantum magneto‐plasmas. Math Comput Simul. 2020;178:407-421. · Zbl 1523.35286
[32] VeereshaP, PrakashaDG, KumarS. A fractional model for propagation of classical optical solitons by using nonsingular derivative. Math Meth Appl Sci. 2020:1-15. https://doi.org.10.1002/mma.6335 · Zbl 07924802 · doi:10.1002/mma.6335
[33] YangAM, ZhangYZ, CattaniC, et al. Application of local fractional series expansion method to solve Klein-Gordon equation on Cantor sets. Abst Appl Anal. 2014;372741:2014. · Zbl 1472.35342
[34] AkilandeeswariA, BalachandranK, AnnapooraniN. On fractional partial differential equations of diffusion type with integral kernel. Mathematical Modelling, Optimization, Analytic and Numerical Solutions; 2020:333-349. · Zbl 1467.35330
[35] YangXJ. General Fractional Derivatives: Theory, Methods and Applications. New York: CRC Press; 2019. · Zbl 1417.26001
[36] YangXJ, GaoF, JuY. General Fractional Derivatives with Applications in Viscoelasticity. New York: Academic press; 2020. · Zbl 1446.26001
[37] deCarvalho‐NetoPM, PlanasG. Mild solutions to fractional Navier-Stokes equations in \(\mathbb{R}^N\). J Diff Equ. 2015;259:2948-2980. · Zbl 1436.35316
[38] CaoJ, SongG, WangJ, ShiQ, SunS. Blow‐up and global solutions for a class of time fractional nonlinear diffusion equation with weakly spatial source. Appl Math Lett. 2019;91:201-206. · Zbl 1407.35034
[39] AzevedoJ, CuevasC, HenriquezE. Existence and asymptotic behavior for the time fractional Keller-Segel model for chemotaxis. Math Nachr. 2019;292:462-480. · Zbl 1419.35200
[40] CuevasC, SilvaC, SotoH. On the time‐fractional Keller-Segel model for chemotaxis. Math Meth Appl Sci. 2020;43:769-798. · Zbl 1445.35301
[41] LiL, LiuJG. Some compactness criteria for weak solutions of time fractional PDEs. SIAM J Math Anal. 2019;50:3963-3995. · Zbl 1403.35318
[42] BaleanuD, JleliM, KumarS, SametB. A fractional derivative with two singular kernels and application to a heat conduction problem. Adv Diff Equ. 2020;2020:252. https://doi.org/10.1186/s13662‐020‐02684‐z · Zbl 1482.26005 · doi:10.1186/s13662‐020‐02684‐z
[43] KumarA, KumarS. A modified analytical approach for fractional discrete KdV equations arising in particle vibrations. Proc Natl Acad Sci, India, Sect A Phys Sci. 2018;88:95-106. · Zbl 1393.34016
[44] KumarS, KumarR, CattaniC, SametB. Chaotic behaviour of fractional predator-prey dynamical system. Chaos Soliton Fract. 2020;109811:135. · Zbl 1489.92119
[45] LiuJG, YangXJ, FengYY. On integrability of the time fractional nonlinear heat conduction equation. J Geom Phys. 2019;144:190-198. · Zbl 1439.35540
[46] KumarS, KumarA, OdibatZ, AldhaifallahM, NisarKS. A comparison study of two modified analytical approach for the solution of nonlinear fractional shallow water equations in fluid flow. AIMS Math. 2020;5:3035-3055. · Zbl 1484.76017
[47] KumarS, NisarKS, KumarR, CattaniC, SametB. A new Rabotnov fractional-exponential function based fractional derivative for diffusion equation under external force. Math Meth Appl Sci. 2020;43:1-12.
[48] YangYY, BaleanuD, YangXJ. A local fractional variational iteration method for Laplace equation within local fractional operators. Abst Appl Anal. 2013;202650:2013. · Zbl 1273.65158
[49] YangXJ, FengYY, CattaniC. Inc M, Fundamental solutions of anomalous diffusion equations with the decay exponential kernel. Math Meth Appl Sci. 2019;178:4054-4060. · Zbl 1425.35228
[50] AllenM, CaffarelliL, VasseurA. A parabolic problem with a fractional time derivative. Arch Ration Mech Anal. 2016;221:603-630. · Zbl 1338.35428
[51] CaputoM, FabrizioM. A new definition of fractional derivative without singular kernel. Progr Fract Differ Appl. 2015;1:73-85.
[52] GorenfloR, LuchkoY, YamamotoM. Time fractional diffusion equation in the fractional Sobolev spaces. Fract Calc Appl Anal. 2015;18:799-820. · Zbl 1499.35642
[53] KhalilR, Al HoraniM, YousefA, SababehM. A new definition of fractional derivative. J Comput Appl Math. 2014;264:65-70. · Zbl 1297.26013
[54] LiL, LiuJG. A generalized definition of Caputo derivatives and its applications to fractional ODEs. SIAM J Math Anal. 2018;50:2867-2900. · Zbl 1401.26013
[55] AdamsRA. Sobolev Spaces. New York: Academic Press; 1975.
[56] EvansLC. Partial Differential Equations. Providence: American Mathematical Society; 1998. · Zbl 0905.00004
[57] KilbasAA, SrivastavaHM, TrujilloJJ. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier; 2006. · Zbl 1092.45003
[58] LiL, LiuJG, WangL. Cauchy problems for Keller-Segel type time‐space fractional diffusion equation. J Diff Equ. 2018;265:1044-1096. · Zbl 1427.35329
[59] AlikhanovAA. A priori estimates for solutions of boundary value problems for fractional‐order equations. Diff Equ. 2010;46:658-664. · Zbl 1208.35161
[60] MesloubS, AlgahtaniO. On a singular nonlocal time fractional order mixed problem with a memory term. Math Meth Appl Sci. 2018;41:4676-4690. · Zbl 1394.35559
[61] EvansLC. Weak Convergence Methods for Nonlinear Partial Differential Equations: CBMS Regional Conference Series in Mathematics. Providence: American Mathematical Society; 1990:1-95.
[62] FengY, LiL, XuX. Continuous and discrete one dimensional autonomous fractional ODEs. Discrete Contin Dyn Syst. 2018;23:3109-3135. · Zbl 1405.34008
[63] KeyantuoV, LizamaC, WarmaM. Existence, regularity and representation of solutions of time fractional diffusion equations. Adv Diff Equ. 2016;21:837-886. · Zbl 1375.47034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.