×

Global solvability of prey-predator models with indirect predator-taxis. (English) Zbl 1464.35019

Summary: This paper analyzes prey-predator models with indirect predator-taxis in such a way that chemical secreted by the predator triggers the repellent behavior of prey against the predator. Under the assumption of quadratic decay of predator, we prove the global existence and uniform boundedness of classical solutions up to two spatial dimensions. Moreover, via the linear stability analysis, we show that large chemosensitivity gives rise to the occurrence of pattern formations. We also obtain the global stability results for the nontrivial constant steady states by establishing proper Lyapunov functionals.

MSC:

35B35 Stability in context of PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K59 Quasilinear parabolic equations
92C17 Cell movement (chemotaxis, etc.)
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Ahn, I.; Yoon, C., Global well-posedness and stability analysis of prey-predator model with indirect prey-taxis, J. Differ. Equ., 268, 8, 4222-4255 (2019) · Zbl 1430.35120 · doi:10.1016/j.jde.2019.10.019
[2] Alikakos, ND, \( \mathit{L}^p\) bounds of solutions of reaction-diffusion equations, Commun. Partial Differ. Equ., 4, 8, 827-868 (1979) · Zbl 0421.35009 · doi:10.1080/03605307908820113
[3] Amann, H., Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differ. Integral Equ., 3, 1, 13-75 (1990) · Zbl 0729.35062
[4] Bai, X., Winkler, M.: Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J. 553-583 (2016) · Zbl 1345.35117
[5] Chakraborty, A.; Singh, M.; Lucy, D.; Ridland, P., Predator-prey model with prey-taxis and diffusion, Math. Comput. Model., 46, 3-4, 482-498 (2007) · Zbl 1132.35395 · doi:10.1016/j.mcm.2006.10.010
[6] Cummings, WC; Thompson, PO, Gray whales, eschrichtius robustus, avoid the underwater sounds of killer whales, orcinus orca, Fish. Bull., 69, 3, 525-530 (1971)
[7] Curé, C.; Antunes, R.; Alves, AC; Visser, F.; Kvadsheim, PH; Miller, PJ, Responses of male sperm whales (physeter macrocephalus) to killer whale sounds: implications for anti-predator strategies, Sci. Rep., 3, 1, 1-7 (2013) · doi:10.1038/srep01579
[8] Flowers, MA; Graves, BM, Juvenile toads avoid chemical cues from snake predators, Anim. Behav., 53, 3, 641-646 (1997) · doi:10.1006/anbe.1996.0338
[9] Fuest, M., Analysis of a chemotaxis model with indirect signal absorption, J. Differ. Equ., 267, 8, 4778-4806 (2019) · Zbl 1419.35094 · doi:10.1016/j.jde.2019.05.015
[10] He, X.; Zheng, S., Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Appl. Math. Lett., 49, 73-77 (2015) · Zbl 1381.35188 · doi:10.1016/j.aml.2015.04.017
[11] Horstmann, D.; Winkler, M., Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., 215, 1, 52-107 (2005) · Zbl 1085.35065 · doi:10.1016/j.jde.2004.10.022
[12] Jin, HY; Wang, ZA, Global stability of prey-taxis systems, J. Differ. Equ., 262, 3, 1257-1290 (2017) · Zbl 1364.35143 · doi:10.1016/j.jde.2016.10.010
[13] Kowalczyk, R., Preventing blow-up in a chemotaxis model, J. Math. Anal. Appl., 305, 2, 566-588 (2005) · Zbl 1065.35063 · doi:10.1016/j.jmaa.2004.12.009
[14] Laurençot, P.: Global bounded and unbounded solutions to a chemotaxis system with indirect signal productio. arXiv:1810.06909 (2018)
[15] Lee, J.; Hillen, T.; Lewis, M., Pattern formation in prey-taxis systems, J. Biol. Dyn., 3, 6, 551-573 (2009) · Zbl 1315.92064 · doi:10.1080/17513750802716112
[16] Li, X., Global existence and boundedness of a chemotaxis model with indirect production and general kinetic function, Z. Angew. Math. Phys., 71, 4, 1-22 (2020) · Zbl 1450.35066 · doi:10.1007/s00033-020-01339-z
[17] Osaki, K.; Tsujikawa, T.; Yagi, A.; Mimura, M., Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51, 1, 119-144 (2002) · Zbl 1005.35023 · doi:10.1016/S0362-546X(01)00815-X
[18] Porzio, MM; Vespri, V., Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, Journal of differential equations, 103, 1, 146-178 (1993) · Zbl 0796.35089 · doi:10.1006/jdeq.1993.1045
[19] Rodriguez, N., Winkler, M.: On the global existence and qualitative behavior of one-dimensional solutions to a model for urban crime. arXiv:1903.06331 (2019)
[20] Short, MB; D’orsogna, MR, A statistical model of criminal behavior, Math. Models Methods Appl. Sci., 18, 1, 1249-1267 (2008) · Zbl 1180.35530 · doi:10.1142/S0218202508003029
[21] Tao, Y., Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal. Real World Appl., 11, 3, 2056-2064 (2010) · Zbl 1195.35171 · doi:10.1016/j.nonrwa.2009.05.005
[22] Tao, Y.; Winkler, M., Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differ. Equ., 252, 1, 692-715 (2012) · Zbl 1382.35127 · doi:10.1016/j.jde.2011.08.019
[23] Tao, Y.; Winkler, M., Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., 47, 6, 4229-4250 (2015) · Zbl 1328.35103 · doi:10.1137/15M1014115
[24] Tao, Y.; Winkler, M., Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system, Z. Angew. Math. Phys., 67, 6, 138 (2016) · Zbl 1356.35054 · doi:10.1007/s00033-016-0732-1
[25] Tao, Y.; Winkler, M., Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production, J. Eur. Math. Society, 19, 12, 3641-3678 (2017) · Zbl 1406.35068 · doi:10.4171/JEMS/749
[26] Tello, JI; Winkler, M., A chemotaxis system with logistic source, Commun. Partial Differ. Equ., 32, 6, 849-877 (2007) · Zbl 1121.37068 · doi:10.1080/03605300701319003
[27] Tello, JI; Wrzosek, D., Predator-prey model with diffusion and indirect prey-taxis, Math. Models Methods Appl. Sci., 26, 11, 2129-2162 (2016) · Zbl 1349.92133 · doi:10.1142/S0218202516400108
[28] Tyutyunov, YV; Titova, LI; Senina, IN, Prey-taxis destabilizes homogeneous stationary state in spatial gause-kolmogorov-type model for predator-prey system, Ecol. Complex., 31, 170-180 (2017) · doi:10.1016/j.ecocom.2017.07.001
[29] Wang, Q., Wang, D., Feng, Y.: Global well-posedness and uniform boundedness of urban crime models: One-dimensional case. J. Differ. Equ. (2020) · Zbl 1440.35329
[30] Winkler, M., Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., 35, 8, 1516-1537 (2010) · Zbl 1290.35139 · doi:10.1080/03605300903473426
[31] Winkler, M., Global solvability and stabilization in a two-dimensional cross-diffusion system modeling urban crime propagation, Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 36, 6, 1747-1790 (2019) · Zbl 1428.35611 · doi:10.1016/j.anihpc.2019.02.004
[32] Wu, S.; Shi, J.; Wu, B., Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differ. Equ., 260, 7, 5847-5874 (2016) · Zbl 1335.35131 · doi:10.1016/j.jde.2015.12.024
[33] Wu, S.; Wang, J.; Shi, J., Dynamics and pattern formation of a diffusive predator-prey model with predator-taxis, Math. Models Methods Appl. Sci., 28, 11, 2275-2312 (2018) · Zbl 1411.35171 · doi:10.1142/S0218202518400158
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.