×

Exact solutions of nonlinear equations in mathematical physics via negative power expansion method. (English) Zbl 1490.35378

Summary: In this paper, a direct method called negative power expansion (NPE) method is presented and extended to construct exact solutions of nonlinear mathematical physical equations. The presented NPE method is also effective for the coupled, variable-coefficient and some other special types of equations. To illustrate the effectiveness, the \((2 + 1)\)-dimensional dispersive long wave (DLW) equations, Maccari’s equations, Tzitzeica-Dodd-Bullough (TDB) equation, Sawada-Kotera (SK) equation with variable coefficients and two lattice equations are considered. As a result, some exact solutions are obtained including traveling wave solutions, non-traveling wave solutions and semi-discrete solutions. This paper shows that the NPE method is a simple and effective method for solving nonlinear equations in mathematical physics.

MSC:

35Q51 Soliton equations
35J99 Elliptic equations and elliptic systems
68W30 Symbolic computation and algebraic computation
Full Text: DOI

References:

[1] M.J. Ablowitz and P.A. Clarkson, Soliton, Nonlinear Evolution Equations and Inverse Scattering, Cambridge Univ. Press, New York, 1991.  CrossRef · Zbl 0762.35001
[2] I. Aslan, Multi-wave and rational solutions for nonlinear evolution equations, Int. J. Nonlinear Sci. Numer. Simul. 11 (2010), 619-623.  CrossRef
[3] I. Aslan, Rational and multi-wave solutions to some nonlinear physical models, Rom. J. Phys. 58 (2013), 893-903.
[4] C.Q. Dai, Y. Fan, and N. Zhang, Re-observation on localized waves constructed by variable separation solutions of (1+1)-dimensional coupled integrable dispersionless equations via the projective Riccati equation method, Appl. Math. Lett. 96 (2019), 20-26.  CrossRef · Zbl 1435.37051
[5] U.C. De and K. Mandal, Ricci solitons and gradient Ricci solitons on N(k)paracontact manifolds, Zh. Mat. Fiz. Anal. Geom. 15 (2019), 369-378.  CrossRef
[6] E.G. Fan, Soliton solutions for a generalized Hirota-Satsuma coupled KdV equation and a coupled MKdV equation, Phys. Lett. A 282 (2001), 18-22.  CrossRef · Zbl 0984.37092
[7] C.S. Gardner, J.M. Greene, M.D. Kruskal, and R.M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Lett. 19 (1967), 1095-1097.  CrossRef · Zbl 1061.35520
[8] J.H. He and M.A. Abdou, New periodic solutions for nonlinear evolution equations using Exp-function method, Chaos Soliton. Fract. 34 (2007), 1421-1429.  CrossRef · Zbl 1152.35441
[9] J.H. He, F.Y. Ji, and H. Mohammad-Sedighi, Difference equation vs differential equation on different scales, Internat. J. Numer. Methods Heat Fluid Flow 31 (2021), 391-401  CrossRef
[10] J.H. He and X.H. Wu, Exp-function method for nonlinear wave equations, Chaos Soliton. Fract. 30 (2006), 700-708.  CrossRef · Zbl 1141.35448
[11] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27 (1971), 1192-1194.  CrossRef · Zbl 1168.35423
[12] F.Y. Ji, C.H. He, J.J. Zhang, and J.H. He,A fractal Boussinesq equation for nonlinear transverse vibration of a nanofiber-reinforced concrete pillar, Appl. Math. Model. 32 (2020), 437-448.  CrossRef · Zbl 1481.74266
[13] Z.Z. Kang and T.C. Xia, Multi-solitons for the coupled Fokas-Lenells system via Riemann-Hilbert approach, Chinese Phys. Lett. 35 (2018), Article ID 070201.  CrossRef
[14] C.Z. Li and H.J. Zhou, Solutions of the Frobenius coupled KP equation, Zh. Mat. Fiz. Anal. Geom. 15 (2019), 369-378.  CrossRef · Zbl 1453.35050
[15] Y. Liu, Y.T. Gao, Z.Y. Sun, and X. Yu, Multi-soliton solutions of the forced variablecoefficient extended Korteweg-de Vries equation arisen in fluid dynamics of internal solitary waves, Nonlinear Dyn. 66 (2011), 575-587.  CrossRef · Zbl 1356.35205
[16] W.H. Liu and Y.F. Zhang, Multiple rogue wave solutions for a (3+1)-dimensional Hirota bilinear equation, Appl. Math. Lett. 98 (2019), 184-190.  CrossRef · Zbl 1426.35085
[17] A. Maccari, The Kadomtsev-Petviashvili equation as a source of integrable model equations, J. Math. Phys. 37 (1996), 6207-6212.  CrossRef · Zbl 0861.35100
[18] W. Malfliet, Solitary wave solutions of nonlinear wave equations, Amer. J. Phys. 60 (1992), 650-654.  CrossRef · Zbl 1219.35246
[19] W.J. Rui and Y.F. Zhang, Soliton and lump-soliton solutions in the Grammian form for the Bogoyavlenskii-Kadomtsev-Petviashvili equation, Adv. Differential Equations 2020 (2020), Article ID 195.  CrossRef · Zbl 1482.35196
[20] V.N. Serkin, A. Hasegawa, and T.L. Belyaeva, Nonautonomous solitons in external potentials, Phys. Rev. Lett. 98 (2007), Article ID 074102.  CrossRef · Zbl 1203.78042
[21] X.Y. Shan and J.Y. Zhu, The Mikhauilov-Novikov-Wang hierarchy and its Hamiltonian structures, Acta Phys. Pol. B 43 (2012), 1953-1963.  CrossRef · Zbl 1371.37128
[22] D.D. Shi and Y.F. Zhang, Diversity of exact solutions to the conformable space-time fractional MEW equation, Appl. Math. Lett. 99 (2020), Article ID 105994.  CrossRef · Zbl 1423.35413
[23] B. Xu and S. Zhang, A novel approach to time-dependent-coefficient WBK system: doubly periodic waves and singular nonlinear dynamics, Complexity, 2018 (2018), Article ID 3158126.  CrossRef · Zbl 1405.35188
[24] B. Xu and S. Zhang, Integrability, exact solutions and nonlinear dynamics of a nonisospectral integral-differential system, Open Phys. 17 (2019), 299-306.  CrossRef
[25] B. Xu and S. Zhang, Exact solutions with arbitrary functions of the (4+1)dimensional Fokas equation, Therm. Sci. 23 (2019), No. 4, 2403-2411.  CrossRef
[26] B. Xu and S. Zhang, Derivation and soliton dynamics of a new non-isospectral and variable-coefficient system, Therm. Sci. 23 (2019), Suppl. 3, S639-S646.  CrossRef
[27] B. Xu, L.J. Zhang, and S. Zhang, Analytical insights into three models: exact solutions and nonlinear vibrations, J. Low Freq. Noise Vib. Active Control 38 (2019), 901-913.  CrossRef
[28] Z.Y. Yan and H.Q. Zhang, New explicit solitary wave solutions and periodic wave solutions for Whitham-Broer-Kaup equation in shallow water, Phys. Lett. A 285 (2001), 355-362.  CrossRef · Zbl 0969.76518
[29] S. Zhang, Exp-function method for constructing explicit and exact solutions of a lattice equation, Appl. Math. Comput. 199 (2008), 242-249.  CrossRef · Zbl 1142.65102
[30] S. Zhang and M.A. Abdou, Exact solutions of the mKdV and Sawada-Kotera equations with variable coefficients via exp-function method, J. Appl. Math. Inform. 28 (2010), 143-152. · Zbl 1229.35235
[31] S. Zhang and B. Cai, Multi-soliton solutions of a variable-coefficient KdV hierarchy, Nonlinear Dyn. 78 (2014), 1593-1600.  CrossRef
[32] S. Zhang, J.H. Li, and L.Y Zhang, A direct algorithm of exp-function method for non-linear evolution equations in fluids, Therm. Sci. 20 (2016), 881-884.  CrossRef
[33] S. Zhang and T.C. Xia, A generalized F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equations, Appl. Math. Comput. 183 (2006), 1190- 1200.  CrossRef · Zbl 1111.35318
[34] S. Zhang and T.C. Xia, A generalized auxiliary equation method and its application to (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations, J. Phys. A: Math. Theor. 40 (2007), 227-248.  CrossRef · Zbl 1105.35320
[35] S. Zhang and T.C. Xia, A further improved tanh function method exactly solving the (2+1)-dimensional dispersive long wave equations, Appl. Math. E-Notes 8(2008), 58-66. · Zbl 1161.35496
[36] S. Zhang, B. Xu, and H.Q. Zhang, Exact solutions of a KdV equation hierarchy with variable coefficients, Int. J. Comput. Math. 91 (2014), 1601-1616.  CrossRef · Zbl 1326.35326
[37] S. Zhang, C.H. You, and B. Xu, Simplest exp-function method for exact solutions of Mikhauilov-Novikov-Wang equations, Therm. Sci. 23 (2019), 2381-2388.  CrossRef
[38] S. Zhang and H.Q. Zhang, Discrete Jacobi elliptic function expansion method for nonlinear differential-difference equations, Phys. Scripta, 80 (2009) Article ID 045002.  CrossRef · Zbl 1179.35337
[39] S. Zhang and H.Q. Zhang, Exp-function method for N-soliton solutions of nonlinear differential-difference equations, Z. Naturforsch. A 65 (2010), 924-934.  CrossRef
[40] S. Zhang and H.Q. Zhang, A transformed rational function method for (3+1)dimensional potential YTSF equation, Pramana J. Phys. 76 (2011), 561-571.  CrossRef
[41] S. Zhang, L.J. Zhang, and B. Xu, Rational waves and complex dynamics: analytical insights into a generalized nonlinear Schrödinger equation with distributed coefficients, Complexity 2019 (2019), Article ID 3206503.  CrossRef · Zbl 1428.35546
[42] S. Zhang and Q.A. Zong,Exact solutions with external linear functions for the potential Yu-Toda-Sasa-Fukuyama equation, Therm. Sci. A 22 (2018), 1621-1628.  CrossRef
[43] Y.B. Zhou, M.L. Wang, and Y.M. Wang, Periodic wave solutions to a coupled KdV equation with variable coefficients, Phys. Lett. A 308 (2003), 31-36.  CrossRef · Zbl 1008.35061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.