×

Exact solutions of a KdV equation hierarchy with variable coefficients. (English) Zbl 1326.35326

Summary: In this paper, a nonisospectral and variable-coefficient KdV equation hierarchy with self-consistent sources is derived from the related linear spectral problem. Exact solutions of the KdV equation hierarchy are obtained through the inverse scattering transformation (IST). It is shown that the IST is an effective mathematical tool for solving the whole hierarchy of nonisospectral nonlinear partial differential equations with self-consistent sources.

MSC:

35Q53 KdV equations (Korteweg-de Vries equations)
35C05 Solutions to PDEs in closed form
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
35P25 Scattering theory for PDEs
35R30 Inverse problems for PDEs
Full Text: DOI

References:

[1] DOI: 10.1063/1.522558 · Zbl 0296.34062 · doi:10.1063/1.522558
[2] DOI: 10.1103/PhysRevLett.30.1262 · doi:10.1103/PhysRevLett.30.1262
[3] DOI: 10.1063/1.528533 · Zbl 0698.35141 · doi:10.1063/1.528533
[4] DOI: 10.1088/0305-4470/27/3/028 · Zbl 0811.35120 · doi:10.1088/0305-4470/27/3/028
[5] Chen D.Y., Introuction to Soliton (2006)
[6] DOI: 10.1016/S0375-9601(02)00776-4 · Zbl 0997.34007 · doi:10.1016/S0375-9601(02)00776-4
[7] DOI: 10.1016/S0960-0779(02)00472-1 · Zbl 1030.35136 · doi:10.1016/S0960-0779(02)00472-1
[8] DOI: 10.1016/S0010-4655(02)00873-1 · Zbl 1196.35182 · doi:10.1016/S0010-4655(02)00873-1
[9] DOI: 10.1143/PTP.51.703 · Zbl 0942.37505 · doi:10.1143/PTP.51.703
[10] DOI: 10.1103/PhysRevLett.19.1095 · doi:10.1103/PhysRevLett.19.1095
[11] DOI: 10.1016/j.chaos.2006.03.020 · Zbl 1141.35448 · doi:10.1016/j.chaos.2006.03.020
[12] DOI: 10.1103/PhysRevLett.27.1192 · Zbl 1168.35423 · doi:10.1103/PhysRevLett.27.1192
[13] DOI: 10.1016/j.camwa.2012.04.004 · Zbl 1268.35107 · doi:10.1016/j.camwa.2012.04.004
[14] DOI: 10.1002/cpa.3160210503 · Zbl 0162.41103 · doi:10.1002/cpa.3160210503
[15] Li Q., J. Phys. A 41 (2008)
[16] Miurs M.R., Bäcklund Transformation (1978)
[17] Nachman A.I., Stud. Appl. Math 71 pp 243– (1984) · Zbl 0557.35032 · doi:10.1002/sapm1984713243
[18] DOI: 10.1016/j.chaos.2003.12.047 · Zbl 1049.35160 · doi:10.1016/j.chaos.2003.12.047
[19] DOI: 10.1016/j.physa.2006.11.039 · doi:10.1016/j.physa.2006.11.039
[20] DOI: 10.1016/j.physleta.2008.10.014 · Zbl 1227.37019 · doi:10.1016/j.physleta.2008.10.014
[21] DOI: 10.1143/JPSJ.34.1289 · Zbl 1334.35299 · doi:10.1143/JPSJ.34.1289
[22] DOI: 10.1016/0375-9601(96)00103-X · Zbl 0972.35526 · doi:10.1016/0375-9601(96)00103-X
[23] DOI: 10.1063/1.525721 · Zbl 0514.35083 · doi:10.1063/1.525721
[24] Xu B.Z., Appl. Math. JCU 9B pp 331– (1994)
[25] DOI: 10.1016/j.chaos.2005.03.021 · Zbl 1088.35532 · doi:10.1016/j.chaos.2005.03.021
[26] DOI: 10.1016/j.physleta.2007.07.062 · Zbl 1217.35156 · doi:10.1016/j.physleta.2007.07.062
[27] Zakharov V.E., Sov. Phys. JETP 34 pp 62– (1972)
[28] DOI: 10.1088/1751-8113/40/2/003 · Zbl 1105.35320 · doi:10.1088/1751-8113/40/2/003
[29] Zhang J.B., J. Phys. A: Math. Theor 44 (2011)
[30] DOI: 10.1063/1.533420 · Zbl 0968.37023 · doi:10.1063/1.533420
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.