×

Analytical insights into a generalized semidiscrete system with time-varying coefficients: derivation, exact solutions, and nonlinear soliton dynamics. (English) Zbl 1506.37093

Summary: In this paper, a new generalized semidiscrete integrable system with time-varying coefficients is analytically studied. Firstly, the generalized semidiscrete system is derived from a semidiscrete matrix spectral problem by embedding finite time-varying coefficient functions. Secondly, exact and explicit \(N\)-soliton solutions of the semidiscrete system are obtained by using the inverse scattering analysis. Finally, three special cases when \(N=1,2,3\) of the obtained \(N\)-soliton solutions are simulated by selecting some appropriate coefficient functions. It is shown that the time-varying coefficient functions affect the spatiotemporal structures and the propagation velocities of the obtained semidiscrete one-soliton solutions, two-soliton solutions, and three-soliton solutions.

MSC:

37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
35Q51 Soliton equations
Full Text: DOI

References:

[1] Fermi, E.; Pasta, J.; Ulam, S., Collected Papers of Enrico Fermi (1965), Chicago, IL, USA: Chicago University Press, Chicago, IL, USA
[2] Zhang, S.; Zhang, L. J.; Xu, B., Rational waves and complex dynamics: analytical insights into a generalized nonlinear Schrödinger equation with distributed coefficients, Complexity, 2019 (2019) · Zbl 1428.35546 · doi:10.1155/2019/3206503
[3] Watanabe, S.; van der Zant, H. S. J.; Strogatz, S. H.; Orlando, T. P., Dynamics of circular arrays of Josephson junctions and the discrete sine-Gordon equation, Physica D: Nonlinear Phenomena, 97, 4, 429-470 (1996) · Zbl 1194.35432 · doi:10.1016/0167-2789(96)00083-8
[4] Kenkre, V. M.; Campbell, D. K., Self-trapping on a dimer: time-dependent solutions of a discrete nonlinear Schrödinger equation, Physical Review B, 34, 7, 4959-4961 (1986) · doi:10.1103/physrevb.34.4959
[5] Ablowitz, M. J.; Musslimani, Z. H., Discrete spatial solitons in a diffraction-managed nonlinear waveguide array: a unified approach, Physica D, 184, 1-4, 276-303 (2003) · Zbl 1030.78007 · doi:10.1016/s0167-2789(03)00226-4
[6] Dai, C.; Zhang, J., Jacobian elliptic function method for nonlinear differential-difference equations, Chaos, Solitons and Fractals, 27, 4, 1042-1047 (2006) · Zbl 1091.34538 · doi:10.1016/j.chaos.2005.04.071
[7] Zhu, S. D., Exp-function method for the hybrid-lattice system, International Journal of Nonlinear Sciences and Numerical Simulation, 8, 3, 461-464 (2007) · doi:10.1515/ijnsns.2007.8.3.461
[8] Zhang, S., Exp-function method for constructing explicit and exact solutions of a lattice equation, Applied Mathematics and Computation, 199, 1, 242-249 (2008) · Zbl 1142.65102 · doi:10.1016/j.amc.2007.09.051
[9] Ding, D.-J.; Jin, D.-Q.; Dai, C.-Q., Analytical solutions of differential-difference sine-Gordon equation, Thermal Science, 21, 4, 1701-1705 (2017) · doi:10.2298/tsci160809056d
[10] Egorova, I.; Michor, J.; Teschl, G., Soliton solutions of the Toda hierarchy on quasi-periodic backgrounds revisited, Mathematische Nachrichten, 282, 4, 526-539 (2009) · Zbl 1166.37028 · doi:10.1002/mana.200610752
[11] Zhang, S.; Zhang, H. Q., Discrete Jacobi elliptic function expansion method for nonlinear differential-difference equations, Physica Scripta, 80, 4 (2009) · Zbl 1179.35337 · doi:10.1088/0031-8949/80/04/045002
[12] Zhang, S.; Zhang, H.-Q., Exp-function method for N-soliton solutions of nonlinear differential-difference equations, Zeitschrift für Naturforschung A, 65, 11, 924-934 (2010) · doi:10.1515/zna-2010-1105
[13] Zhang, J. B.; Zhang, D. J.; Chen, D. Y., Exact solutions to a mixed Toda lattice hierarchy through the inverse scattering transform, Journal of Physics A: Mathematical and Theoritical, 44, 11 (2011) · Zbl 1231.37037 · doi:10.1088/1751-8113/44/11/115201
[14] Zhang, S.; Liu, D., Multisoliton solutions of a (2 + 1)-dimensional variable-coefficient Toda lattice equation via Hirota’s bilinear method, Canadian Journal of Physics, 92, 3, 184-190 (2014) · doi:10.1139/cjp-2013-0341
[15] Zhang, S.; Wang, D., Variable-coefficient nonisospectral Toda lattice hierarchy and its exact solutions, Pramana, 85, 6, 1143-1156 (2015) · doi:10.1007/s12043-014-0918-z
[16] Cattani, C.; Sulaiman, T. A.; Baskonus, H. M.; Bulut, H., On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel’d-Sokolov systems, Optical and Quantum Electronics, 50, 3 (2018) · doi:10.1007/s11082-018-1406-3
[17] Cattani, C.; Sulaiman, T. A.; Baskonus, H. M.; Bulut, H., Solitons in an inhomogeneous Murnaghan’s rod, European Physical Journal Plus, 133, 5 (2018) · doi:10.1140/epjp/i2018-12085-y
[18] Shafiq, A.; Hammouch, Z.; Turab, A., Impact of radiation in a stagnation point flow of Walters’ B fluid towards a Riga plate, Thermal Science and Engineering Progress, 6, 1, 27-33 (2018) · doi:10.1016/j.tsep.2017.11.005
[19] Hammouch, Z.; Guedda, M., Existence and non-uniqueness of solution for a mixed convection flow through a porous medium, Journal of Applied Mathematics and Informatics, 31, 5-6, 631-642 (2013) · Zbl 1288.34023 · doi:10.14317/jami.2013.631
[20] Shafiq, A.; Rashidi, M. M.; Hammouch, Z.; Khan, I., Analytical investigation of stagnation point flow of Williamson liquid with melting phenomenon, Physica Scripta, 94, 3 (2019) · doi:10.1088/1402-4896/aaf548
[21] Baskonus, H. M.; Bulut, H.; Atangana, A., On the complex and hyperbolic structures of the longitudinal wave equation in a magneto-electro-elastic circular rod, Smart Materials and Structures, 25, 3 (2016) · doi:10.1088/0964-1726/25/3/035022
[22] Khalique, C. M.; Mhlanga, I. E., Travelling waves and conservation laws of a (2 + 1)-dimensional coupling system with Korteweg-de Vries equation, Applied Mathematics and Nonlinear Sciences, 3, 1, 241-254 (2018) · Zbl 1524.35107 · doi:10.21042/amns.2018.1.00018
[23] Amkadni, M.; Azzouzi, A.; Hammouch, Z., On the exact solutions of laminar MHD flow over a stretching flat plate, Communications in Nonlinear Science and Numerical Simulation, 13, 2, 359-368 (2008) · Zbl 1136.34316 · doi:10.1016/j.cnsns.2006.04.002
[24] Mathobo, M.; Atangana, A., Analysis of exact groundwater model within a confined aquifer: new proposed model beyond the Theis equation, European Physical Journal Plus, 133, 10 (2018) · doi:10.1140/epjp/i2018-12205-9
[25] Eskitaşçıoğlu, E. İ.; Aktaş, M. B.; Baskonus, H. M., New complex and hyperbolic forms for Ablowitz-Kaup-Newell-Segur wave equation with fourth order, Applied Mathematics and Nonlinear Sciences, 4, 1, 93-100 (2019) · Zbl 1524.35525
[26] Zuo, D.-W.; Jia, H.-X.; Shan, D.-M., Dynamics of the optical solitons for a (2 + 1)-dimensional nonlinear Schrödinger equation, Superlattices and Microstructures, 101, 1, 522-528 (2017) · doi:10.1016/j.spmi.2016.11.051
[27] Zuo, D.-W.; Jia, H.-X., Interaction of the nonautonomous soliton in the optical fiber, OPTIK, 127, 23, 11282-11287 (2016) · doi:10.1016/j.ijleo.2016.09.022
[28] Zuo, D.-W.; Mo, H.-X.; Zhou, H.-P., Multi-soliton solutions of the generalized Sawada-Kotera equation, Zeitschrift für Naturforschung A, 71, 4, 305-309 (2016) · doi:10.1515/zna-2015-0445
[29] Zuo, D.-W., Modulation instability and breathers synchronization of the nonlinear Schrödinger Maxwell-Bloch equation, Applied Mathematics Letters, 79, 1, 182-186 (2018) · Zbl 1461.35199 · doi:10.1016/j.aml.2017.12.019
[30] Zuo, D.-W.; Zhang, G.-F., Exact solutions of the nonlocal Hirota equations, Applied Mathematics Letters, 93, 1, 66-71 (2019) · Zbl 1412.35046 · doi:10.1016/j.aml.2019.01.038
[31] Yu, W.; Liu, W.; Triki, H.; Zhou, Q.; Biswas, A., Phase shift, oscillation and collision of the anti-dark solitons for the (3+1)-dimensional coupled nonlinear Schrödinger equation in an optical fiber communication system, Nonlinear Dynamics, 97, 2, 1253-1262 (2019) · Zbl 1430.35217 · doi:10.1007/s11071-019-05045-y
[32] Xie, X.-Y.; Meng, G.-Q., Collisions between the dark solitons for a nonlinear system in the geophysical fluid, Chaos, Solitons and Fractals, 107, 1, 143-145 (2018) · Zbl 1380.35156 · doi:10.1016/j.chaos.2017.12.014
[33] Yu, W.; Liu, W.; Triki, H.; Zhou, Q.; Biswas, A.; Belić, M. R., Control of dark and anti-dark solitons in the (2 + 1)-dimensional coupled nonlinear Schrödinger equations with perturbed dispersion and nonlinearity in a nonlinear optical system, Nonlinear Dynamics, 97, 1, 471-483 (2019) · Zbl 1430.35218 · doi:10.1007/s11071-019-04992-w
[34] Xie, X. Y.; Meng, G. Q., Dark solitons for a variable-coefficient AB system in the geophysical fluids or nonlinear optics, European Physical Journal Plus, 134, 7 (2019) · doi:10.1140/epjp/i2019-12726-7
[35] Serkin, V. N.; Hasegawa, A.; Belyaeva, T. L., Nonautonomous solitons in external potentials, Physical Review Letters, 98, 7 (2007) · doi:10.1103/physrevlett.98.074102
[36] Sun, Z. Y.; Gao, Y. T.; Yu, X.; Liu, Y., Amplification of nonautonomous solitons in the Bose-Einstein condensates and nonlinear optics, Europhysics Letters, 93, 4, 40004 (2011) · doi:10.1209/0295-5075/93/40004
[37] Sun, Z. Y.; Yu, X., Transport of nonautonomous solitons in two-dimensional disordered media, Annalen der Physik, 529, 8 (2017) · doi:10.1002/andp.201600323
[38] Liu, Y.; Gao, Y.-T.; Sun, Z.-Y.; Yu, X., Multi-soliton solutions of the forced variable-coefficient extended Korteweg-de Vries equation arisen in fluid dynamics of internal solitary waves, Nonlinear Dynamics, 66, 4, 575-587 (2011) · Zbl 1356.35205 · doi:10.1007/s11071-010-9936-7
[39] Zhang, S.; Xu, B.; Zhang, H.-Q., Exact solutions of a KdV equation hierarchy with variable coefficients, International Journal of Computer Mathematics, 91, 7, 1601-1616 (2014) · Zbl 1326.35326 · doi:10.1080/00207160.2013.855730
[40] Dai, C.-Q.; Liu, J.; Fan, Y.; Yu, D.-G., Two-dimensional localized Peregrine solution and breather excited in a variable-coefficient nonlinear Schrödinger equation with partial nonlocality, Nonlinear Dynamics, 88, 2, 1373-1383 (2017) · doi:10.1007/s11071-016-3316-x
[41] Zhang, S.; Hong, S. Y., Lax integrability and exact solutions of a variable-coefficient and nonisospectral AKNS hierarchy, International Journal of Nonlinear Sciences and Numerical Simulation, 19, 3-4, 251-262 (2018) · Zbl 1401.35279 · doi:10.1515/ijnsns-2016-0191
[42] Xu, B.; Zhang, S., A novel approach to time-dependent-coefficient WBK system: doubly periodic waves and singular nonlinear dynamics, Complexity, 2018 (2018) · Zbl 1405.35188 · doi:10.1155/2018/3158126
[43] Toda, M., Theory of Nonlinear Lattices (1989), Berlin, Germany: Springer, Berlin, Germany · Zbl 0694.70001
[44] Zhang, S.; Wang, D., A Toda lattice hierarchy with variable coefficients and its multi-wave solutions, Thermal Science, 18, 5, 1555-1558 (2014) · doi:10.2298/tsci1405563z
[45] Zhang, S.; Zhou, Y. Y., Multiwave solutions for the Toda lattice equation by generalizing exp-function method, IAENG International Journal of Applied Mathematics, 44, 4, 177-182 (2014) · Zbl 1512.37082
[46] Zhang, S.; Zong, Q. A.; Cao, Q.; Liu, D., Differential-difference equation arising in nanotechnology and it’s exact solutions, Journal of Nano Research, 23, 113-116 (2013) · doi:10.4028/www.scientific.net/jnanor.23.113
[47] Chen, D. Y., Introduction of Soliton (2006), Beijing, China: Science Press, Beijing, China
[48] Tu, G. Z., A trace identity and its application to the theory of discrete integrable systems, Journal of Physics A: Mathematical and General, 23, 17, 3903-3922 (1990) · Zbl 0717.58027
[49] Yang, H. X.; Xu, X. X., Integrable expending models for discrete systems through enlanging associated Lax pairs, Chinese Journal of Physics, 43, 5, 889-900 (2005) · Zbl 07844945
[50] Hirota, R., Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Physical Review Letters, 27, 18, 1192-1194 (1971) · Zbl 1168.35423 · doi:10.1103/physrevlett.27.1192
[51] Wang, M. L., Exact solutions for a compound KdV-Burgers equation, Physics Letters A, 213, 5-6, 279-287 (1996) · Zbl 0972.35526 · doi:10.1016/0375-9601(96)00103-x
[52] Fan, E. G., Extended tanh-function method and its applications to nonlinear equations, Physics Letters A, 277, 4-5, 212-218 (2000) · Zbl 1167.35331 · doi:10.1016/s0375-9601(00)00725-8
[53] Yan, Z.; Zhang, H., New explicit solitary wave solutions and periodic wave solutions for Whitham-Broer-Kaup equation in shallow water, Physics Letters A, 285, 5-6, 355-362 (2001) · Zbl 0969.76518 · doi:10.1016/s0375-9601(01)00376-0
[54] Fan, E. G., Travelling wave solutions in terms of special functions for nonlinear coupled evolution systems, Physics Letters A, 300, 2-3, 243-249 (2002) · Zbl 0997.34007 · doi:10.1016/s0375-9601(02)00776-4
[55] Zhang, S.; Xia, T., A generalized F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equations, Applied Mathematics and Computation, 183, 2, 1190-1200 (2006) · Zbl 1111.35318 · doi:10.1016/j.amc.2006.06.043
[56] Zhang, S.; Wang, W.; Tong, J. L., The improved sub-ODE method for a generalized KdV-mKdV equation with nonlinear terms of any order, Physics Letters A, 372, 21, 3803-3813 (2008) · Zbl 1220.35157 · doi:10.1016/j.physleta.2008.02.048
[57] Zhang, S.; Xia, T., Variable-coefficient Jacobi elliptic function expansion method for (2 + 1)-dimensional Nizhnik-Novikov-Vesselov equations, Applied Mathematics and Computation, 218, 4, 1308-1316 (2011) · Zbl 1229.35254 · doi:10.1016/j.amc.2011.06.014
[58] Dai, C.-Q.; Zhou, G.-Q.; Chen, R.-P.; Lai, X.-J.; Zheng, J., Vector multipole and vortex solitons in two-dimensional Kerr media, Nonlinear Dynamics, 88, 4, 2629-2635 (2017) · doi:10.1007/s11071-017-3399-z
[59] Garder, C. S.; Greene, J. M.; Kruskal, M. D.; Miura, R. M., Method for solving the Korteweg-de Vries equation, Physical Review Letters, 19, 19, 1095-1097 (1967) · Zbl 1103.35360
[60] Fujioka, J.; Espinosa, A.; Rodríguez, R. F., Fractional optical solitons, Physics Letters A, 374, 9, 1126-1134 (2010) · Zbl 1236.35167 · doi:10.1016/j.physleta.2009.12.051
[61] Zhang, S.; Zhang, H.-Q., Fractional sub-equation method and its applications to nonlinear fractional PDEs, Physics Letters A, 375, 7, 1069-1073 (2011) · Zbl 1242.35217 · doi:10.1016/j.physleta.2011.01.029
[62] Aslan, I., Analytic investigation of a reaction-diffusion Brusselator model with the time-space fractional derivative, International Journal of Nonlinear Sciences and Numerical Simulation, 15, 2, 149-155 (2014) · Zbl 1401.35172 · doi:10.1515/ijnsns-2013-0077
[63] Guo, L.; Liu, L.; Wu, Y., Existence of positive solutions for singular fractional differential equations with infinite-point boundary conditions, Nonlinear Analysis: Modelling and Control, 21, 5, 635-650 (2016) · Zbl 1420.34015 · doi:10.15388/na.2016.5.5
[64] Liu, L. L.; Zhang, X. Q.; Liu, L. S.; Wu, Y. H., Iterative positive solutions for singular nonlinear fractional differential equation with integral boundary conditions, Advances in Difference Equations, 2016 (2016) · Zbl 1419.34098 · doi:10.1186/s13662-016-0876-5
[65] Zhang, S.; Liu, M.; Zhang, L., Variable separation for time fractional advection-dispersion equation with initial and boundary conditions, Thermal Science, 20, 3, 789-792 (2016) · doi:10.2298/tsci1603789z
[66] Zhu, B.; Liu, L.; Wu, Y., Local and global existence of mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay, Applied Mathematics Letters, 61, 73-79 (2016) · Zbl 1355.35196 · doi:10.1016/j.aml.2016.05.010
[67] Wu, J.; Zhang, X. G.; Liu, L. S.; Wu, Y. H., Twin iterative solutions for a fractional differential turbulent flow model, Boundary Value Problems, 2016 (2016) · Zbl 1383.34014 · doi:10.1186/s13661-016-0604-9
[68] Xu, R.; Meng, F. W., Some new weakly singular integral inequalities and their applications to fractional differential equations, Journal of Inequalities and Applications, 2016 (2016) · Zbl 1337.26022 · doi:10.1186/s13660-016-1015-2
[69] Liu, H. D.; Meng, F. W., Some new generalized Volterra-Fredholm type discrete fractional sum inequalities and their applications, Journal of Inequalities and Applications, 2016 (2016) · Zbl 1347.26045 · doi:10.1186/s13660-016-1152-7
[70] Yang, X.-J.; Machado, J. A. T., A new fractional operator of variable order: application in the description of anomalous diffusion, Physica A: Statistical Mechanics and Its Applications, 481, 1, 276-283 (2017) · Zbl 1495.35204 · doi:10.1016/j.physa.2017.04.054
[71] Zhang, X.; Liu, L.; Wu, Y.; Wiwatanapataphee, B., Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion, Applied Mathematics Letters, 66, 1-8 (2017) · Zbl 1364.35429 · doi:10.1016/j.aml.2016.10.015
[72] Zhu, B.; Liu, L.; Wu, Y., Existence and uniqueness of global mild solutions for a class of nonlinear fractional reaction-diffusion equations with delay, Computers and Mathematics with Applications, 78, 6, 1811-1818 (2019) · Zbl 1442.35536 · doi:10.1016/j.camwa.2016.01.028
[73] Wang, Y.; Jiang, J. Q., Existence and nonexistence of positive solutions for the fractional coupled system involving generalized p-Laplacian, Advances in Difference Equations, 2017 (2017) · Zbl 1444.34019
[74] Zhang, K. M., On sign-changing solution for some fractional differential equations, Boundary Value Problem, 2017 (2017) · Zbl 1360.34051 · doi:10.1186/s13661-017-0787-8
[75] Du, X. S.; Mao, A. M., Existence and multiplicity of nontrivial solutions for a class of semilinear fractional Schrödinger equations, Journal of Function Spaces, 2017 (2017) · Zbl 1377.35072 · doi:10.1155/2017/3793872
[76] He, J.-H., Fractal calculus and its geometrical explanation, Results in Physics, 10, 272-276 (2018) · doi:10.1016/j.rinp.2018.06.011
[77] Aslan, I., Symbolic computation of exact solutions for fractional differential-difference equation models, Nonlinear Analysis: Modelling and Control, 20, 1, 132-144 (2015) · Zbl 1420.34008 · doi:10.15388/na.2015.1.9
[78] Aslan, İ., An analytic approach to a class of fractional differential-difference equations of rational type via symbolic computation, Mathematical Methods in the Applied Sciences, 38, 1, 27-36 (2015) · Zbl 1323.34002 · doi:10.1002/mma.3047
[79] Aslan, İ., Exact solutions for a local fractional DDE associated with a nonlinear transmission line, Communications in Theoretical Physics, 66, 3, 315-320 (2016) · Zbl 1351.34095 · doi:10.1088/0253-6102/66/3/315
[80] Aslan, İ., Exact solutions for fractional DDEs via auxiliary equation method coupled with the fractional complex transform, Mathematical Methods in the Applied Sciences, 39, 18, 5619-5625 (2016) · Zbl 1358.34006 · doi:10.1002/mma.3946
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.