×

Analytic continuation over complex landscapes. (English) Zbl 1520.82040

Summary: In this paper we follow up the study of ‘complex complex landscapes’ [the authors, “Complex complex landscapes”, Phys. Rev. Res. 3, No. 2, Article ID 023064, 5 p. (2021; doi:10.1103/PhysRevResearch.3.023064)], rugged landscapes of many complex variables. Unlike real landscapes, the classification of saddles by index is trivial. Instead, the spectrum of fluctuations at stationary points determines their topological stability under analytic continuation of the theory. Topological changes, which occur at so-called Stokes points, proliferate among saddles with marginal (flat) directions and are suppressed otherwise. This gives a direct interpretation of the gap or ‘threshold’ energy – which in the real case separates saddles from minima – as the level where the spectrum of the hessian matrix of stationary points develops a gap. This leads to different consequences for the analytic continuation of real landscapes with different structures: the global minima of ‘one step replica-symmetry broken’ landscapes lie beyond a threshold, their hessians are gapped, and are locally protected from Stokes points, whereas those of ‘many step replica-symmetry broken’ have gapless hessians and Stokes points immediately proliferate. A new matrix ensemble is found, playing the role that GOE plays for real landscapes in determining the topological nature of saddles.

MSC:

82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
81R40 Symmetry breaking in quantum theory
15B52 Random matrices (algebraic aspects)
60B20 Random matrices (probabilistic aspects)

References:

[1] Witten, E.; Andersen, J. E.; Boden, H. U.; Hahn, A.; Himpel, B., Analytic continuation of Chern-Simons theory, Chern-Simons Gauge Theory: 20 Years After (AMS/IP Studies in Advanced Mathematics vol 50), pp 347-446 (2011), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1337.81106
[2] Alexandru, A.; Başar, G.; Bedaque, P. F.; Warrington, N. C., Complex paths around the sign problem, Rev. Mod. Phys., 94 (2022) · doi:10.1103/revmodphys.94.015006
[3] Howls, C. J., Hyperasymptotics for multidimensional integrals, exact remainder terms and the global connection problem, Proc. R. Soc. A, 453, 2271-94 (1997) · Zbl 1067.58501 · doi:10.1098/rspa.1997.0122
[4] Takagi, T., On an algebraic problem related to an analytic theorem of Carathéodory and Fejér and on an allied theorem of Landau, Jpn. J. Math.: Trans. Abstr., 1, 83-93 (1924) · JFM 50.0223.01 · doi:10.4099/jjm1924.1.0_83
[5] Nguyen, H. H.; O’Rourke, S., The elliptic law, Int. Math. Res. Not., 2015, 7620-89 (2014) · Zbl 1325.15030 · doi:10.1093/imrn/rnu174
[6] Kent-Dobias, J.; Kurchan, J., Complex complex landscapes, Phys. Rev. Res., 3 (42021) · doi:10.1103/PhysRevResearch.3.023064
[7] Livan, G.; Novaes, M.; Vivo, P., Introduction to Random Matrices (SpringerBriefs in Mathematical Physics vol 26) (2018), Cham: Springer International Publishing, Cham · Zbl 1386.15003
[8] Weyl, H., Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung), Math. Ann., 71, 441-79 (121912) · JFM 43.0436.01 · doi:10.1007/BF01456804
[9] Obuchi, T.; Takahashi, K., Partition-function zeros of spherical spin glasses and their relevance to chaos, J. Phys. A: Math. Theor., 45 (32012) · Zbl 1241.82082 · doi:10.1088/1751-8113/45/12/125003
[10] Takahashi, K.; Obuchi, T., Zeros of the partition function and dynamical singularities in spin-glass systems, J. Phys.: Conf. Ser., 473 (2013) · doi:10.1088/1742-6596/473/1/012023
[11] Auffinger, A.; Arous, G. B.; Černý, J., Random matrices and complexity of spin glasses, Commun. Pure Appl. Math., 66, 165-201 (2012) · Zbl 1269.82066 · doi:10.1002/cpa.21422
[12] Castellani, T.; Cavagna, A., Spin-glass theory for pedestrians, J. Stat. Mech. (2005) · Zbl 1456.82490 · doi:10.1088/1742-5468/2005/05/P05012
[13] Kurchan, J., Supersymmetry in spin glass dynamics, J. Physique I, 2, 1333-52 (1992) · doi:10.1051/jp1:1992214
[14] Etienne, B., Théorie Générale des Équations Algbriques (1779), Paris: L’imprimerie de Ph.-D. Pierres, rue S. Jacques, Paris
[15] Ros, V.; Biroli, G.; Cammarota, C., Dynamical instantons and activated processes in mean-field glass models, SciPost Phys., 10, 002 (2021) · doi:10.21468/SciPostPhys.10.1.002
[16] Folena, G.; Franz, S.; Ricci-Tersenghi, F., Rethinking mean-field glassy dynamics and its relation with the energy landscape: the surprising case of the spherical mixed p-spin model, Phys. Rev. X, 10 (2020) · doi:10.1103/PhysRevX.10.031045
[17] Derrida, B., The zeroes of the partition function of the random energy model, Physica A, 177, 31-37 (91991) · doi:10.1016/0378-4371(91)90130-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.