×

Bose-Einstein-like condensation of deformed random matrix: a replica approach. (English) Zbl 1539.82113

Summary: In this work, we investigate a symmetric deformed random matrix, which is obtained by perturbing the diagonal elements of the Wigner matrix. The eigenvector \(x_{\min}\) of the minimal eigenvalue \(\lambda_{\min}\) of the deformed random matrix tends to condensate at a single site. In certain types of perturbations and in the limit of the large components, this condensation becomes a sharp phase transition, the mechanism of which can be identified with the Bose-Einstein condensation in a mathematical level. We study this Bose-Einstein like condensation phenomenon by means of the replica method. We first derive a formula to calculate the minimal eigenvalue and the statistical properties of \(x_{\min}\). Then, we apply the formula for two solvable cases: when the distribution of the perturbation has the double peak, and when it has a continuous distribution. For the double peak, we find that at the transition point, the participation ratio changes discontinuously from a finite value to zero. On the contrary, in the case of a continuous distribution, the participation ratio goes to zero either continuously or discontinuously, depending on the distribution.

MSC:

82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
35Q40 PDEs in connection with quantum mechanics

References:

[1] Rosenzweig, N.; Porter, C. E., Phys. Rev., 120, 1698-714 (1960) · doi:10.1103/PhysRev.120.1698
[2] Kravtsov, V.; Khaymovich, I.; Cuevas, E.; Amini, M., New J. Phys., 17 (2015) · doi:10.1088/1367-2630/17/12/122002
[3] Capitaine, M.; Donati-Martin, C. (2016)
[4] Facoetti, D.; Vivo, P.; Biroli, G., Europhys. Lett., 115 (2016) · doi:10.1209/0295-5075/115/47003
[5] Lee, J. O.; Schnelli, K., Probab. Theory Relat. Fields, 164, 165-241 (2016) · Zbl 1338.15071 · doi:10.1007/s00440-014-0610-8
[6] Livan, G.; Novaes, M.; Vivo, P., Introduction to Random Matrices Theory and Practice, vol 63 (2018), Berlin: Springer, Berlin · Zbl 1386.15003
[7] Aspelmeier, T.; Moore, M. A., Phys. Rev. Lett., 92 (2004) · doi:10.1103/PhysRevLett.92.077201
[8] Franz, S.; Nicoletti, F.; Parisi, G.; Ricci-Tersenghi, F., SciPost Phys., 12, 016 (2022) · doi:10.21468/SciPostPhys.12.1.016
[9] Franz, S.; Nicoletti, F.; Ricci-Tersenghi, F., J. Stat. Mech. (2022) · Zbl 1539.82377 · doi:10.1088/1742-5468/ac6518
[10] Perry, A.; Wein, A. S.; Bandeira, A. S.; Moitra, A., Ann. Stat., 46, 2416-51 (2018) · Zbl 1404.62065 · doi:10.1214/17-AOS1625
[11] Krajenbrink, A.; Le Doussal, P.; O’Connell, N., Phys. Rev. E, 103 (2021) · doi:10.1103/PhysRevE.103.042120
[12] Rainone, C.; Urbani, P.; Zamponi, F.; Lerner, E.; Bouchbinder, E., SciPost Phys. Core, 4, 008 (2021) · doi:10.21468/SciPostPhysCore.4.2.008
[13] Bouchbinder, E.; Lerner, E.; Rainone, C.; Urbani, P.; Zamponi, F., Phys. Rev. B, 103 (2021) · doi:10.1103/PhysRevB.103.174202
[14] Lerner, E.; Düring, G.; Bouchbinder, E., Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.035501
[15] Mizuno, H.; Shiba, H.; Ikeda, A., Proc. Natl Acad. Sci., 114, E9767-74 (2017) · doi:10.1073/pnas.1709015114
[16] Angelani, L.; Paoluzzi, M.; Parisi, G.; Ruocco, G., Proc. Natl Acad. Sci., 115, 8700-4 (2018) · doi:10.1073/pnas.1805024115
[17] Wang, L.; Ninarello, A.; Guan, P.; Berthier, L.; Szamel, G.; Flenner, E., Nat. Commun., 10, 1-7 (2019) · doi:10.1038/s41467-018-07978-1
[18] Castellani, T.; Cavagna, A., J. Stat. Mech. (2005) · Zbl 1456.82490 · doi:10.1088/1742-5468/2005/05/P05012
[19] Franz, S.; Parisi, G.; Urbani, P.; Zamponi, F., Proc. Natl Acad. Sci., 112, 14539-44 (2015) · doi:10.1073/pnas.1511134112
[20] Folena, G.; Urbani, P., J. Stat. Mech. (2022) · Zbl 1539.82376 · doi:10.1088/1742-5468/ac6253
[21] Mézard, M.; Parisi, G.; Virasoro, M. A., Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications, vol 9 (1987), Singapore: World Scientific, Singapore · Zbl 0992.82500
[22] Parisi, G.; Urbani, P.; Zamponi, F., Theory of Simple Glasses: Exact Solutions in Infinite Dimensions (2020), Cambridge: Cambridge University Press, Cambridge · Zbl 1431.82001
[23] Edwards, S. F.; Jones, R. C., J. Phys. A: Math. Gen., 9, 1595 (1976) · Zbl 0346.60003 · doi:10.1088/0305-4470/9/10/011
[24] Sommers, H. J.; Crisanti, A.; Sompolinsky, H.; Stein, Y., Phys. Rev. Lett., 60, 1895-8 (1988) · doi:10.1103/PhysRevLett.60.1895
[25] Rodgers, G. J.; Bray, A. J., Phys. Rev. B, 37, 3557-62 (1988) · doi:10.1103/PhysRevB.37.3557
[26] Semerjian, G.; Cugliandolo, L. F., J. Phys. A: Math. Gen., 35, 4837 (2002) · Zbl 1066.82019 · doi:10.1088/0305-4470/35/23/303
[27] Nagao, T.; Tanaka, T., J. Phys. A: Math. Theor., 40, 4973 (2007) · Zbl 1120.15019 · doi:10.1088/1751-8113/40/19/003
[28] Kühn, R., J. Phys. A: Math. Theor., 41 (2008) · Zbl 1188.15037 · doi:10.1088/1751-8113/41/29/295002
[29] Urbani, P., J. Phys. A: Math. Theor., 55 (2022) · Zbl 1511.82045 · doi:10.1088/1751-8121/ac8088
[30] Kabashima, Y.; Takahashi, H., J. Phys. A: Math. Theor., 45 (2012) · Zbl 1252.81061 · doi:10.1088/1751-8113/45/32/325001
[31] Sherrington, D.; Kirkpatrick, S., Phys. Rev. Lett., 35, 1792-6 (1975) · doi:10.1103/PhysRevLett.35.1792
[32] Nieuwenhuizen, T. M., Phys. Rev. Lett., 74, 4289-92 (1995) · doi:10.1103/PhysRevLett.74.4289
[33] Cugliandolo, L. F.; Dean, D. S., J. Phys. A: Math. Gen., 28, 4213 (1995) · Zbl 0925.82197 · doi:10.1088/0305-4470/28/15/003
[34] Fyodorov, Y. V.; Perret, A.; Schehr, G., J. Stat. Mech. (2015) · Zbl 1456.82912 · doi:10.1088/1742-5468/2015/11/P11017
[35] Franz, S.; Parisi, G.; Sevelev, M.; Urbani, P.; Zamponi, F., SciPost Phys., 2, 019 (2017) · doi:10.21468/SciPostPhys.2.3.019
[36] Stanifer, E.; Morse, P.; Middleton, A.; Manning, M., Phys. Rev. E, 98 (2018) · doi:10.1103/PhysRevE.98.042908
[37] Shimada, M.; Mizuno, H.; Ikeda, A., Soft Matter, 16, 7279-88 (2020) · doi:10.1039/D0SM00376J
[38] Shimada, M.; Mizuno, H.; Ikeda, A., Soft Matter, 17, 346-64 (2021) · doi:10.1039/D0SM01583K
[39] Shimada, M.; De Giuli, E., SciPost Phys., 12, 090 (2022) · doi:10.21468/SciPostPhys.12.3.090
[40] Gurarie, V.; Chalker, J. T., Phys. Rev. B, 68 (2003) · doi:10.1103/PhysRevB.68.134207
[41] Das, P.; Procaccia, I., Phys. Rev. Lett., 126 (2021) · doi:10.1103/PhysRevLett.126.085502
[42] Guerra, R.; Bonfanti, S.; Procaccia, I.; Zapperi, S., Phys. Rev. E, 105 (2022) · doi:10.1103/PhysRevE.105.054104
[43] Majumdar, S., p 407 (2010), Oxford University Press
[44] Zaccarelli, E.; Buldyrev, S. V.; La Nave, E.; Moreno, A. J.; Saika-Voivod, I.; Sciortino, F.; Tartaglia, P., Phys. Rev. Lett., 94 (2005) · doi:10.1103/PhysRevLett.94.218301
[45] Manley, S.; Wyss, H. M.; Miyazaki, K.; Conrad, J. C.; Trappe, V.; Kaufman, L. J.; Reichman, D. R.; Weitz, D. A., Phys. Rev. Lett., 95 (2005) · doi:10.1103/PhysRevLett.95.238302
[46] Shimada, M.; Mizuno, H.; Wyart, M.; Ikeda, A., Phys. Rev. E, 98 (2018) · doi:10.1103/PhysRevE.98.060901
[47] Diederich, S.; Opper, M., Phys. Rev. A, 39, 4333 (1989) · doi:10.1103/PhysRevA.39.4333
[48] Biscari, P.; Parisi, G., J. Phys. A: Math. Gen., 28, 4697 (1995) · Zbl 0868.60101 · doi:10.1088/0305-4470/28/17/006
[49] Potters, M.; Bouchaud, J. P., A First Course in Random Matrix Theory: For Physicists, Engineers and Data Scientists (2020), Cambridge: Cambridge University Press, Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.