×

On the spectral gap of spherical spin glass dynamics. (English. French summary) Zbl 1435.82025

The authors study the timescales to equilibrium for spherical \(p\)-spin glass model of system size \(N\). It is proved that the log-Sobolev constant and spectral gap are of order 1 at sufficiently high temperatures. The spectral gap decays exponentially in \(N\) at sufficiently low temperatures.

MSC:

82C44 Dynamics of disordered systems (random Ising systems, etc.) in time-dependent statistical mechanics
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)
82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics

References:

[1] R. J. Adler and J. E. Taylor. Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York, 2007. · Zbl 1149.60003
[2] M. Aizenman and R. Holley. Rapid convergence to equilibrium of stochastic Ising models in the Dobrushin Shlosman regime. In Percolation Theory and Ergodic Theory of Infinite Particle Systems 1-11. Minneapolis, Minn., 1984-1985. IMA Vol. Math. Appl.8. Springer, New York, 1987. · Zbl 0621.60118
[3] G. W. Anderson, A. Guionnet and O. Zeitouni. An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics118. Cambridge University Press, Cambridge, 2010. · Zbl 1184.15023
[4] A. Auffinger and G. Ben Arous. Complexity of random smooth functions on the high-dimensional sphere. Ann. Probab.41 (6) (2013) 4214-4247. · Zbl 1288.15045 · doi:10.1214/13-AOP862
[5] A. Auffinger, G. Ben Arous and J. Černý. Random matrices and complexity of spin glasses. Comm. Pure Appl. Math.66 (2) (2013) 165-201. · Zbl 1269.82066 · doi:10.1002/cpa.21422
[6] D. Bakry and M. Ledoux. Lévy-Gromov’s isoperimetric inequality for an infinite-dimensional diffusion generator. Invent. Math.123 (2) (1996) 259-281. · Zbl 0855.58011
[7] G. Ben Arous, A. Bovier and J. Černý. Universality of the REM for dynamics of mean-field spin glasses. Comm. Math. Phys.282 (3) (2008) 663-695. · Zbl 1208.82024 · doi:10.1007/s00220-008-0565-7
[8] G. Ben Arous, A. Bovier and V. Gayrard. Glauber dynamics of the random energy model. I. Metastable motion on the extreme states. Comm. Math. Phys.235 (3) (2003) 379-425. · Zbl 1037.82038 · doi:10.1007/s00220-003-0798-4
[9] G. Ben Arous, A. Bovier and V. Gayrard. Glauber dynamics of the random energy model. II. Aging below the critical temperature. Comm. Math. Phys.236 (1) (2003) 1-54. · Zbl 1037.82039 · doi:10.1007/s00220-003-0799-3
[10] G. Ben Arous, A. Dembo and A. Guionnet. Aging of spherical spin glasses. Probab. Theory Related Fields120 (1) (2001) 1-67. · Zbl 0993.60055 · doi:10.1007/PL00008774
[11] G. Ben Arous, A. Dembo and A. Guionnet. Cugliandolo-Kurchan equations for dynamics of spin-glasses. Probab. Theory Related Fields136 (4) (2006) 619-660. · Zbl 1109.82021 · doi:10.1007/s00440-005-0491-y
[12] G. Ben Arous and A. Guionnet. Large deviations for Langevin spin glass dynamics. Probab. Theory Related Fields102 (4) (1995) 455-509. · Zbl 0830.60017 · doi:10.1007/BF01198846
[13] G. Ben Arous and A. Guionnet. Symmetric Langevin spin glass dynamics. Ann. Probab.25 (3) (1997) 1367-1422. · Zbl 0954.60031 · doi:10.1214/aop/1024404517
[14] G. Ben Arous and O. Gün. Universality and extremal aging for dynamics of spin glasses on subexponential time scales. Comm. Pure Appl. Math.65 (1) (2012) 77-127. · Zbl 1237.82043
[15] L. Berthier and G. Biroli. Theoretical perspective on the glass transition and amorphous materials. Rev. Modern Phys.83 (2) (2011) 587.
[16] A. Bovier and F. den Hollander. Metastability: A Potential-Theoretic Approach. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]351. Springer, Cham, 2015. · Zbl 1339.60002
[17] A. Bovier and V. Gayrard. Convergence of clock processes in random environments and ageing in the \(p\)-spin SK model. Ann. Probab.41 (2) (2013) 817-847. · Zbl 1267.82114 · doi:10.1214/11-AOP705
[18] A. Bovier, V. Gayrard and A. Svejda. Convergence to extremal processes in random environments and extremal ageing in SK models. Probab. Theory Related Fields157 (1-2) (2013) 251-283. · Zbl 1284.82048 · doi:10.1007/s00440-012-0456-x
[19] T. Castellani and A. Cavagna. Spin-glass theory for pedestrians. J. Stat. Mech. Theory Exp.2005 (05), P05012 (2005). · Zbl 1456.82490
[20] J. Černý and T. Wassmer. Aging of the Metropolis dynamics on the random energy model. Probab. Theory Related Fields167 (1-2) (2017) 253-303. · Zbl 1359.82018
[21] I. Chavel. Eigenvalues in Riemannian Geometry. Pure and Applied Mathematics115. Academic Press, Orlando, FL, 1984. Including a chapter by Burton Randol, with an appendix by Jozef Dodziuk. · Zbl 0551.53001
[22] W. Chen. The Aizenman-Sims-Starr scheme and Parisi formula for mixed \(p\)-spin spherical models. Electron. J. Probab.18 (94), 14 (2013). · Zbl 1288.60127
[23] A. Crisanti and L. Leuzzi. Spherical \(2+p\) spin-glass model: An exactly solvable model for glass to spin-glass transition. Phys. Rev. Lett.93, 217203 (2004). · Zbl 1262.82048
[24] L. F. Cugliandolo and J. Kurchan. Analytical solution of the off-equilibrium dynamics of a long-range spin-glass model. Phys. Rev. Lett.71 (1993) 173-176.
[25] E. De Santis. Glauber dynamics of spin glasses at low and high temperature. Ann. Inst. Henri Poincaré Probab. Stat.38 (5) (2002) 681-710. · Zbl 1034.82051 · doi:10.1016/S0246-0203(02)01106-8
[26] P. G. Debenedetti and F. H. Stillinger. Supercooled liquids and the glass transition. Nature410 (6825) (2001) 259-267.
[27] A. Dembo, A. Guionnet and C. Mazza. Limiting dynamics for spherical models of spin glasses at high temperature. J. Stat. Phys.128 (4) (2007) 847-881. · Zbl 1130.82032 · doi:10.1007/s10955-006-9239-z
[28] J. Ding, A. Sly and N. Sun. Proof of the satisfiability conjecture for large \(k\). In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC ’15 59-68. ACM, New York, NY, USA, 2015. · Zbl 1321.68304
[29] R. L. Dobrushin and S. B. Shlosman. Constructive criterion for the uniqueness of Gibbs field. In Statistical Physics and Dynamical Systems 347-370. Köszeg, 1984. Progr. Phys.10. Birkhäuser, Boston, MA, 1985. · Zbl 0569.46042
[30] L. C. Evans. Partial Differential Equations, 2nd edition. Graduate Studies in Mathematics19. American Mathematical Society, Providence, RI, 2010. · Zbl 1194.35001
[31] L. R. Fontes, M. Isopi, Y. Kohayakawa and P. Picco. The spectral gap of the REM under Metropolis dynamics. Ann. Appl. Probab.8 (3) (1998) 917-943. · Zbl 0935.60084 · doi:10.1214/aoap/1028903457
[32] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. · Zbl 1042.35002
[33] R. B. Griffiths, C. Weng and J. S. Langer. Relaxation times for metastable states in the mean-field model of a ferromagnet. Phys. Rev.149 (1966) 301-305.
[34] A. Guionnet and B. Zegarlinski. Decay to equilibrium in random spin systems on a lattice. Comm. Math. Phys.181 (3) (1996) 703-732. · Zbl 0882.60093 · doi:10.1007/BF02101294
[35] A. Guionnet and B. Zegarlinski. Lectures on logarithmic Sobolev inequalities. In Séminaire de Probabilités, XXXVI 1-134. Lecture Notes in Math.1801. Springer, Berlin, 2003. · Zbl 1125.60111
[36] R. Holley. Possible rates of convergence in finite range, attractive spin systems. In Particle Systems, Random Media and Large Deviations 215-234. Brunswick, Maine, 1984. Contemp. Math.41. Amer. Math. Soc., Providence, RI, 1985. · Zbl 0577.60099
[37] P. D. Lax. Functional Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience. Wiley, New York, 2002. · Zbl 1009.47001
[38] M. Ledoux. A simple analytic proof of an inequality by P. Buser. Proc. Amer. Math. Soc.121 (3) (1994) 951-959. · Zbl 0812.58093 · doi:10.1090/S0002-9939-1994-1186991-X
[39] M. Ledoux. The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs89. American Mathematical Society, Providence, RI, 2001.
[40] M. Ledoux and M. Talagrand. Probability in Banach Spaces: Isoperimetry and Processes. Classics in Mathematics. Springer, Berlin, 2011. Reprint of the 1991 edition. · Zbl 1226.60003
[41] D. A. Levin, M. J. Luczak and Y. Peres. Glauber dynamics for the mean-field Ising model: Cut-off, critical power law, and metastability. Probab. Theory Related Fields146 (1-2) (2010) 223-265. · Zbl 1187.82076 · doi:10.1007/s00440-008-0189-z
[42] O. C. Martin, R. Monasson and R. Zecchina. Statistical mechanics methods and phase transitions in optimization problems. Theoret. Comput. Sci.265 (1-2) (2001) 3-67. · Zbl 1032.90075 · doi:10.1016/S0304-3975(01)00149-9
[43] F. Martinelli and E. Olivieri. Approach to equilibrium of Glauber dynamics in the one phase region. II. The general case. Comm. Math. Phys.161 (3) (1994) 487-514. · Zbl 0793.60111 · doi:10.1007/BF02101930
[44] P. Mathieu. Convergence to equilibrium for spin glasses. Comm. Math. Phys.215 (1) (2000) 57-68. · Zbl 1018.82019 · doi:10.1007/s002200000292
[45] P. Mathieu and J. C. Mourrat. Aging of asymmetric dynamics on the random energy model. Probab. Theory Related Fields161 (1-2) (2015) 351-427. · Zbl 1316.82026 · doi:10.1007/s00440-014-0551-2
[46] M. Mézard and A. Montanari. Information, Physics, and Computation. Oxford University Press, New York, NY, USA, 2009. · Zbl 1163.94001
[47] M. Mézard, G. Parisi and M. Angel Virasoro. Spin Glass Theory and Beyond, 9. World Scientific, Singapore, 1987. · Zbl 0992.82500
[48] D. W. Stroock and B. Zegarliński. The equivalence of the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition. Comm. Math. Phys.144 (2) (1992) 303-323. · Zbl 0745.60104
[49] E. Subag. The complexity of spherical \(p\)-spin models – a second moment approach. Ann. Probab. (2015). · Zbl 1417.60029
[50] E. Subag. The geometry of the gibbs measure of pure spherical spin glasses. Inventiones Mathematicae (2017) 1-75. · Zbl 1379.60043 · doi:10.1007/s00222-017-0726-4
[51] E. Subag and O. Zeitouni. The extremal process of critical points of the pure \(p\)-spin spherical spin glass model. Probab. Theory Related Fields. · Zbl 1390.60180 · doi:10.1007/s00440-016-0724-2
[52] M. Talagrand. Free energy of the spherical mean field model. Probab. Theory Related Fields134 (3) (2006) 339-382. · Zbl 1130.82019 · doi:10.1007/s00440-005-0433-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.