×

Volcano transition in a system of generalized Kuramoto oscillators with random frustrated interactions. (English) Zbl 07813333

Summary: In a system of heterogeneous (Abelian) Kuramoto oscillators with random or ‘frustrated’ interactions, transitions from states of incoherence to partial synchronization were observed. These so-called volcano transitions are characterized by a change in the shape of a local field distribution and were discussed in connection with an oscillator glass. In this paper, we consider a different class of oscillators, namely a system of (non-Abelian) SU(2)-Lohe oscillators that can also be defined on the 3-sphere, i.e. an oscillator is generalized to be defined as a unit vector in four-dimensional Euclidean space. We demonstrate that such higher-dimensional Kuramoto models with reciprocal and nonreciprocal random interactions represented by a low-rank matrix exhibit a volcano transition as well. We determine the critical coupling strength at which a volcano-like transition occurs, employing an Ott-Antonsen ansatz. Numerical simulations provide additional validations of our analytical findings and reveal the differences in observable collective dynamics prior to and following the transition. Furthermore, we show that a system of unit 3-vector oscillators on the 2-sphere does not possess a volcano transition.
{© 2024 The Author(s). Published by IOP Publishing Ltd}

References:

[1] Strogatz, S.; Walker, S.; Yeomans, J. M.; Tarnita, C.; Arcaute, E.; De Domenico, M.; Artime, O.; Goh, K-I, Fifty years of ‘More is different’, Nat. Rev. Phys., 4, 508-10 (2022) · doi:10.1038/s42254-022-00483-x
[2] Strogatz, S. H., Sync (2003), Hyperion
[3] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences (2001), Cambridge University Press · Zbl 0993.37002
[4] Strogatz, S. H., From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143, 1-20 (2000) · Zbl 0983.34022 · doi:10.1016/S0167-2789(00)00094-4
[5] Kuramoto, Y., Chemical Oscillations, Waves and Turbulence (2003), Dover Publications
[6] Daido, H., Quasientrainment and slow relaxation in a population of oscillators with random and frustrated interactions, Phys. Rev. Lett., 68, 1073-6 (1992) · doi:10.1103/PhysRevLett.68.1073
[7] Daido, H., Population dynamics of randomly interacting self-oscillators. I: tractable models without frustration, Prog. Theor. Phys., 77, 622-34 (1987) · doi:10.1143/PTP.77.622
[8] Fischer, K. H.; Hertz, J. A., Spin Glasses (Cambridge Studies in Magnetism) (1993), Cambridge University Press
[9] Castellani, T.; Cavagna, A., Spin-glass theory for pedestrians, J. Stat. Mech., 2005 (2005) · Zbl 1456.82490 · doi:10.1088/1742-5468/2005/05/P05012
[10] Ottino-Löffler, B.; Strogatz, S. H., Volcano transition in a solvable model of frustrated oscillators, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.264102
[11] Pazó, D.; Gallego, R., Volcano transition in populations of phase oscillators with random nonreciprocal interactions, Phys. Rev. E, 108 (2023) · doi:10.1103/PhysRevE.108.014202
[12] Stiller, J. C.; Radons, G., Self-averaging of an order parameter in randomly coupled limit-cycle oscillators, Phys. Rev. E, 61, 2148-9 (2000) · doi:10.1103/PhysRevE.61.2148
[13] Daido, H., Algebraic relaxation of an order parameter in randomly coupled limit-cycle oscillators, Phys. Rev. E, 61, 2145-7 (2000) · doi:10.1103/PhysRevE.61.2145
[14] Stiller, J. C.; Radons, G., Dynamics of nonlinear oscillators with random interactions, Phys. Rev. E, 58, 1789-99 (1998) · doi:10.1103/PhysRevE.58.1789
[15] Iatsenko, D.; McClintock, P. V E.; Stefanovska, A., Glassy states and super-relaxation in populations of coupled phase oscillators, Nat. Commun., 5, 4118 (2014) · doi:10.1038/ncomms5118
[16] Ott, E.; Antonsen, T. M., Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18 (2008) · Zbl 1309.34058 · doi:10.1063/1.2930766
[17] Ott, E.; Antonsen, T. M., Long time evolution of phase oscillator systems, Chaos, 19 (2009) · Zbl 1309.34059 · doi:10.1063/1.3136851
[18] Marvel, S. A.; Mirollo, R. E.; Strogatz, S. H., Identical phase oscillators with global sinusoidal coupling evolve by Möbius group action, Chaos, 19 (2009) · Zbl 1311.34082 · doi:10.1063/1.3247089
[19] Pikovsky, A.; Rosenblum, M., Partially integrable dynamics of hierarchical populations of coupled oscillators, Phys. Rev. Lett., 101 (2008) · doi:10.1103/PhysRevLett.101.264103
[20] Pikovsky, A.; Rosenblum, M., Dynamics of heterogeneous oscillator ensembles in terms of collective variables, Physica D, 240, 872-81 (2011) · Zbl 1233.37014 · doi:10.1016/j.physd.2011.01.002
[21] Tanaka, T., Solvable model of the collective motion of heterogeneous particles interacting on a sphere, New J. Phys., 16 (2014) · Zbl 1451.70004 · doi:10.1088/1367-2630/16/2/023016
[22] Jaćimović, V.; Crnkić, A., Low-dimensional dynamics in non-Abelian Kuramoto model on the 3-sphere, Chaos, 28 (2018) · Zbl 1405.37028 · doi:10.1063/1.5029485
[23] Lipton, M.; Mirollo, R.; Strogatz, S. H., The Kuramoto model on a sphere: explaining its low-dimensional dynamics with group theory and hyperbolic geometry, Chaos, 31 (2021) · Zbl 07866706 · doi:10.1063/5.0060233
[24] Zou, W.; He, S.; Senthilkumar, D. V.; Kurths, J., Solvable dynamics of coupled high-dimensional generalized limit-cycle oscillators, Phys. Rev. Lett., 130 (2023) · doi:10.1103/PhysRevLett.130.107202
[25] Crnkić, A.; Jaćimović, V.; Marković, M., On synchronization in Kuramoto models on spheres, Anal. Math. Phys., 11, 129 (2021) · Zbl 1479.34089 · doi:10.1007/s13324-021-00567-4
[26] Chandra, S.; Girvan, M.; Ott, E., Complexity reduction ansatz for systems of interacting orientable agents: beyond the Kuramoto model, Chaos, 29 (2019) · Zbl 1415.34085 · doi:10.1063/1.5093038
[27] Buzanello, G. L.; Barioni, A. E D.; de Aguiar, M. A M., Matrix coupling and generalized frustration in Kuramoto oscillators, Chaos, 32 (2022) · Zbl 07878960 · doi:10.1063/5.0108672
[28] de Aguiar, M. A M., Generalized frustration in the multidimensional Kuramoto model, Phys. Rev. E, 107 (2023) · doi:10.1103/PhysRevE.107.044205
[29] Kong, L-W; Lai, Y-C, Short-lived chimera states, Chaos, 33 (2023) · Zbl 07858601 · doi:10.1063/5.0145573
[30] Lee, S.; Krischer, K., Chimera dynamics of generalized Kuramoto-Sakaguchi oscillators in two-population networks, J. Phys. A: Math. Theor., 56 (2023) · Zbl 1527.34064 · doi:10.1088/1751-8121/acf4d6
[31] Lohe, M. A., Non-Abelian Kuramoto models and synchronization, J. Phys. A: Math. Theor., 42 (2009) · Zbl 1187.37048 · doi:10.1088/1751-8113/42/39/395101
[32] Lohe, M. A., Higher-dimensional generalizations of the Watanabe-Strogatz transform for vector models of synchronization, J. Phys. A: Math. Theor., 51 (2018) · Zbl 1398.34072 · doi:10.1088/1751-8121/aac030
[33] Barioni, A. E D.; de Aguiar, M. A M., Complexity reduction in the 3D Kuramoto model, Chaos Solitons Fractals, 149 (2021) · Zbl 1485.34104 · doi:10.1016/j.chaos.2021.111090
[34] Barioni, A. E D.; de Aguiar, M. A M., Ott-Antonsen ansatz for the D-dimensional Kuramoto model: a constructive approach, Chaos, 31 (2021) · Zbl 07871564 · doi:10.1063/5.0069350
[35] Omel’chenko, O. E., Coherence-incoherence patterns in a ring of non-locally coupled phase oscillators, Nonlinearity, 26, 2469-98 (2013) · Zbl 1281.34051 · doi:10.1088/0951-7715/26/9/2469
[36] Omel’chenko, O. E., The mathematics behind chimera states, Nonlinearity, 31, R121-64 (2018) · Zbl 1395.34045 · doi:10.1088/1361-6544/aaaa07
[37] Laing, C. R., The dynamics of chimera states in heterogeneous Kuramoto networks, Physica D, 238, 1569-88 (2009) · Zbl 1185.34042 · doi:10.1016/j.physd.2009.04.012
[38] Gilmore, R., Lie Groups, Lie Algebras and Some of Their Applications (Dover Books on Mathematics) (2006), Dover Publications
[39] Chandra, S.; Girvan, M.; Ott, E., Continuous versus discontinuous transitions in the D-dimensional generalized Kuramoto model: odd D is different, Phys. Rev. X, 9 (2019) · doi:10.1103/PhysRevX.9.011002
[40] Golub, G. H.; Van Loan, C. F., Matrix Computations (Johns Hopkins Studies in Atlantic History & Culture) (1983), Johns Hopkins University Press · Zbl 0559.65011
[41] Metz, F. L.; Peron, T., Mean-field theory of vector spin models on networks with arbitrary degree distributions, J. Phys. Complex., 3 (2022) · doi:10.1088/2632-072X/ac4bed
[42] Thümler, M.; Srinivas, S. G M.; Schröder, M.; Timme, M., Synchrony for weak coupling in the complexified Kuramoto model, Phys. Rev. Lett., 130 (2023) · doi:10.1103/PhysRevLett.130.187201
[43] Ha, S-Y; Kang, M-J; Lattanzio, C.; Rubino, B., A class of interacting particle systems on the infinite cylinder with flocking phenomena, Math. Models Methods Appl. Sci., 22 (2012) · Zbl 1241.92081 · doi:10.1142/S021820251250008X
[44] Ha, S-Y; Kang, M.; Moon, B., Collective behaviors of a winfree ensemble on an infinite cylinder, Discrete Contin. Dyn. Syst. B, 26, 2749-79 (2021) · Zbl 1468.70008 · doi:10.3934/dcdsb.2020204
[45] Hsiao, T-Y; Lo, Y-F; Wang, W., Synchronization in the quaternionic Kuramoto model (2023)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.