×

On weak ergodicity breaking in mean-field spin glasses. (English) Zbl 07905044

Summary: The weak ergodicity breaking hypothesis postulates that out-of-equilibrium glassy systems lose memory of their initial state despite being unable to reach an equilibrium stationary state. It is a milestone of glass physics, and has provided a lot of insight on the physical properties of glass aging. Despite its undoubted usefulness as a guiding principle, its general validity remains a subject of debate. Here, we present evidence that this hypothesis does not hold for a class of mean-field spin glass models. While most of the qualitative physical picture of aging remains unaffected, our results suggest that some important technical aspects should be revisited.

MSC:

82Dxx Applications of statistical mechanics to specific types of physical systems
82Cxx Time-dependent statistical mechanics (dynamic and nonequilibrium)
60Kxx Special processes

References:

[1] A. P. Young, Spin glasses and random fields, World Scientific, Singapore, ISBN 9789810231835 (1997), doi:10.1142/3517. · doi:10.1142/3517
[2] K. Binder and A. P. Young, Spin glasses: Experimental facts, theoretical concepts, and open questions, Rev. Mod. Phys. 58, 801 (1986), doi:10.1103/RevModPhys.58.801. · doi:10.1103/RevModPhys.58.801
[3] M. Mezard, G. Parisi and M. Virasoro, Spin glass theory and beyond, World Scientific, Singapore, ISBN 9789971501167 (1986), doi:10.1142/0271. · doi:10.1142/0271
[4] A. Cavagna, Supercooled liquids for pedestrians, Phys. Rep. 476, 51 (2009), doi:10.1016/j.physrep.2009.03.003. · doi:10.1016/j.physrep.2009.03.003
[5] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, Optimization by simulated annealing, Science 220, 671 (1983), doi:10.1126/science.220.4598.671. · Zbl 1225.90162 · doi:10.1126/science.220.4598.671
[6] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto and L. Zdeborová, Machine learning and the physical sciences, Rev. Mod. Phys. 91, 045002 (2019), doi:10.1103/RevModPhys.91.045002. · doi:10.1103/RevModPhys.91.045002
[7] G. Folena, A. Manacorda and F. Zamponi, Introduction to the dynamics of disordered systems: Equilibrium and gradient descent, Phys. A: Stat. Mech. Appl. 128152 (2022), doi:10.1016/j.physa.2022.128152. · Zbl 07791850 · doi:10.1016/j.physa.2022.128152
[8] L. F. Cugliandolo and J. Kurchan, Analytical solution of the off-equilibrium dy-namics of a long-range spin-glass model, Phys. Rev. Lett. 71, 173 (1993), doi:10.1103/PhysRevLett.71.173. · doi:10.1103/PhysRevLett.71.173
[9] L. F. Cugliandolo and J. Kurchan, Weak ergodicity breaking in mean-field spin-glass models, Philos. Mag. B 71, 501 (1995), doi:10.1080/01418639508238541. · doi:10.1080/01418639508238541
[10] J. Kurchan, G. Parisi and M. A. Virasoro, Barriers and metastable states as saddle points in the replica approach, J. Phys. I France 3, 1819 (1993), doi:10.1051/jp1:1993217. · doi:10.1051/jp1:1993217
[11] J. Kurchan, Time-reparametrization invariances, multithermalization and the Parisi scheme, SciPost Phys. Core 6, 001 (2023), doi:10.21468/SciPostPhysCore.6.1.001. · doi:10.21468/SciPostPhysCore.6.1.001
[12] L. F. Cugliandolo, J. Kurchan and L. Peliti, Energy flow, partial equilibration, and ef-fective temperatures in systems with slow dynamics, Phys. Rev. E 55, 3898 (1997), doi:10.1103/PhysRevE.55.3898. · doi:10.1103/PhysRevE.55.3898
[13] J. P. Bouchaud, Weak ergodicity breaking and aging in disordered systems, J. Phys. I France 2, 1705 (1992), doi:10.1051/jp1:1992238. · doi:10.1051/jp1:1992238
[14] L. Berthier and G. Biroli, Theoretical perspective on the glass transition and amorphous materials, Rev. Mod. Phys. 83, 587 (2011), doi:10.1103/RevModPhys.83.587. · doi:10.1103/RevModPhys.83.587
[15] M. Baity-Jesi, L. Sagun, M. Geiger, S. Spigler, G. B. Arous, C. Cammarota, Y. LeCun, M. Wyart and G. Biroli, Comparing dynamics: Deep neural networks versus glassy systems, J. Stat. Mech. 124013 (2019), doi:10.1088/1742-5468/ab3281. · Zbl 1459.82317 · doi:10.1088/1742-5468/ab3281
[16] F. Mignacco, F. Krzakala, P. Urbani and L. Zdeborová, Dynamical mean-field theory for stochastic gradient descent in Gaussian mixture classification, Adv. Neural Inf. Process. Syst. 33, 9540 (2020), doi:10.1088/1742-5468/ac3a80. · Zbl 1539.62298 · doi:10.1088/1742-5468/ac3a80
[17] F. Mignacco, P. Urbani and L. Zdeborová, Stochasticity helps to navigate rough landscapes: Comparing gradient-descent-based algorithms in the phase retrieval problem, Mach. Learn.: Sci. Technol. 2, 035029 (2021), doi:10.1088/2632-2153/ac0615. · doi:10.1088/2632-2153/ac0615
[18] A. Sclocchi and P. Urbani, High-dimensional optimization under nonconvex excluded vol-ume constraints, Phys. Rev. E 105, 024134 (2022), doi:10.1103/PhysRevE.105.024134. · doi:10.1103/PhysRevE.105.024134
[19] G. Folena and P. Urbani, Marginal stability of soft anharmonic mean field spin glasses, J. Stat. Mech. 053301 (2022), doi:10.1088/1742-5468/ac6253. · Zbl 1539.82376 · doi:10.1088/1742-5468/ac6253
[20] F. Mignacco and P. Urbani, The effective noise of stochastic gradient descent, J. Stat. Mech. 083405 (2022), doi:10.1088/1742-5468/ac841d. · Zbl 1539.68312 · doi:10.1088/1742-5468/ac841d
[21] A. Manacorda and F. Zamponi, Gradient descent dynamics and the jamming transition in infinite dimensions, J. Phys. A: Math. Theor. 55, 334001 (2022), doi:10.1088/1751-8121/ac7f06. · Zbl 1511.82036 · doi:10.1088/1751-8121/ac7f06
[22] T. Rizzo, Replica-symmetry-breaking transitions and off-equilibrium dynamics, Phys. Rev. E 88, 032135 (2013), doi:10.1103/PhysRevE.88.032135. · doi:10.1103/PhysRevE.88.032135
[23] M. Bernaschi, A. Billoire, A. Maiorano, G. Parisi and F. Ricci-Tersenghi, Strong ergodicity breaking in aging of mean-field spin glasses, Proc. Natl. Acad. Sci. U.S.A. 117, 17522 (2020), doi:10.1073/pnas.1910936117. · Zbl 1485.82012 · doi:10.1073/pnas.1910936117
[24] L. F. Cugliandolo and J. Kurchan, On the out-of-equilibrium relaxation of the Sherrington-Kirkpatrick model, J. Phys. A: Math. Gen. 27, 5749 (1994), doi:10.1088/0305-4470/27/17/011. · Zbl 0850.82056 · doi:10.1088/0305-4470/27/17/011
[25] G. Folena, S. Franz and F. Ricci-Tersenghi, Rethinking mean-field glassy dynamics and its relation with the energy landscape: The surprising case of the spherical mixed p-spin model, Phys. Rev. X 10, 031045 (2020), doi:10.1103/PhysRevX.10.031045. · doi:10.1103/PhysRevX.10.031045
[26] S. Franz, E. Marinari and G. Parisi, Series expansion of the off-equilibrium mode coupling equations, J. Phys. A: Math. Gen. 28, 5437 (1995), doi:10.1088/0305-4470/28/19/001. · Zbl 0868.60105 · doi:10.1088/0305-4470/28/19/001
[27] G. Parisi, Off-equilibrium fluctuation-dissipation relation in fragile glasses, Phys. Rev. Lett. 79, 3660 (1997), doi:10.1103/PhysRevLett.79.3660. · doi:10.1103/PhysRevLett.79.3660
[28] P. Charbonneau and P. K. Morse, Memory formation in jammed hard spheres, Phys. Rev. Lett. 126, 088001 (2021), doi:10.1103/PhysRevLett.126.088001. · doi:10.1103/PhysRevLett.126.088001
[29] Y. Nishikawa, M. Ozawa, A. Ikeda, P. Chaudhuri and L. Berthier, Relaxation dynam-ics in the energy landscape of glass-forming liquids, Phys. Rev. X 12, 021001 (2022), doi:10.1103/PhysRevX.12.021001. · doi:10.1103/PhysRevX.12.021001
[30] T. R. Kirkpatrick and P. G. Wolynes, Connections between some kinetic and equilibrium theo-ries of the glass transition, Phys. Rev. A 35, 3072 (1987), doi:10.1103/PhysRevA.35.3072. · doi:10.1103/PhysRevA.35.3072
[31] T. Maimbourg, J. Kurchan and F. Zamponi, Solution of the dynamics of liq-uids in the large-dimensional limit, Phys. Rev. Lett. 116, 015902 (2016), doi:10.1103/PhysRevLett.116.015902. · doi:10.1103/PhysRevLett.116.015902
[32] G. Szamel, Simple theory for the dynamics of mean-field-like models of glass-forming fluids, Phys. Rev. Lett. 119, 155502 (2017), doi:10.1103/PhysRevLett.119.155502. · doi:10.1103/PhysRevLett.119.155502
[33] E. Agoritsas, T. Maimbourg and F. Zamponi, Out-of-equilibrium dynamical equations of infinite-dimensional particle systems I. The isotropic case, J. Phys. A: Math. Theor. 52, 144002 (2019), doi:10.1088/1751-8121/ab099d. · Zbl 1509.82106 · doi:10.1088/1751-8121/ab099d
[34] S. Franz and J. Kurchan, The relation between Parisi scheme and multi-thermalized dynam-ics in finite dimensions, (arXiv preprint) doi:10.48550/arXiv.2207.05720. · doi:10.48550/arXiv.2207.05720
[35] G. Folena, S. Franz and F. Ricci-Tersenghi, Gradient descent dynamics in the mixed p-spin spherical model: Finite-size simulations and comparison with mean-field integration, J. Stat. Mech. 033302 (2021), doi:10.1088/1742-5468/abe29f. · Zbl 1504.82051 · doi:10.1088/1742-5468/abe29f
[36] T. M. Nieuwenhuizen, Exactly solvable model of a quantum spin glass, Phys. Rev. Lett. 74, 4289 (1995), doi:10.1103/PhysRevLett.74.4289. · doi:10.1103/PhysRevLett.74.4289
[37] A. Auffinger and Y. Zhou, The spherical p+s spin glass at zero temperature, (arXiv preprint) doi:10.48550/arXiv.2209.03866. · doi:10.48550/arXiv.2209.03866
[38] A. Crisanti and L. Leuzzi, Spherical 2+p spin-glass model: An exactly solvable model for glass to spin-glass transition, Phys. Rev. Lett. 93, 217203 (2004), doi:10.1103/PhysRevLett.93.217203. · doi:10.1103/PhysRevLett.93.217203
[39] A. Crisanti and L. Leuzzi, Spherical 2+p spin-glass model: An analytically solv-able model with a glass-to-glass transition, Phys. Rev. B 73, 014412 (2006), doi:10.1103/PhysRevB.73.014412. · doi:10.1103/PhysRevB.73.014412
[40] L. F. Cugliandolo and D. S. Dean, Full dynamical solution for a spherical spin-glass model, J. Phys. A: Math. Gen. 28, 4213 (1995), doi:10.1088/0305-4470/28/15/003. · Zbl 0925.82197 · doi:10.1088/0305-4470/28/15/003
[41] A. Crisanti and H.-J. Sommers, The sphericalp-spin interaction spin glass model: The stat-ics, Z. Phys. B Condens. Matter 87, 341 (1992), doi:10.1007/BF01309287. · doi:10.1007/BF01309287
[42] A. Crisanti and H.-J. Sommers, Thouless-Anderson-Palmer approach to the spherical p-spin spin glass model, J. Phys. I France 5, 805 (1995), doi:10.1051/jp1:1995164. · doi:10.1051/jp1:1995164
[43] A. Cavagna, I. Giardina and G. Parisi, Stationary points of the Thouless-Anderson-Palmer free energy, Phys. Rev. B 57, 11251 (1998), doi:10.1103/PhysRevB.57.11251. · doi:10.1103/PhysRevB.57.11251
[44] J. Kent-Dobias and J. Kurchan, How to count in hierarchical landscapes: A ’full’ solution to mean-field complexity, Phyr. Rev. E 107, 064111 (2023), doi:10.1103/PhysRevE.107.064111. · doi:10.1103/PhysRevE.107.064111
[45] E. Subag, Following the ground states of full-RSB spherical spin glasses, Comm. Pure Appl. Math. 74, 1021 (2020), doi:10.1002/cpa.21922. · Zbl 1467.82097 · doi:10.1002/cpa.21922
[46] A. Montanari, Optimization of the Sherrington-Kirkpatrick Hamiltonian, in IEEE 60th annual symposium on foundations of computer science, Baltimore, US (2019), doi:10.1109/FOCS.2019.00087. · Zbl 1528.82043 · doi:10.1109/FOCS.2019.00087
[47] A. El Alaoui, A. Montanari and M. Sellke, Optimization of mean-field spin glasses, Ann. Probab. 49, 2922 (2021), doi:10.1214/21-AOP1519. · Zbl 07467487 · doi:10.1214/21-AOP1519
[48] A. E. Alaoui and A. Montanari, Algorithmic thresholds in mean field spin glasses, (arXiv preprint) doi:10.48550/arXiv.2009.11481. · doi:10.48550/arXiv.2009.11481
[49] G. Folena, The mixed p-spin model: Selecting, following and losing states, PhD thesis, Uni-versité Paris-Saclay, Paris, France; Università degli studi La Sapienza, Rome, Italy (2020).
[50] G. B. Arous, E. Subag and O. Zeitouni, Geometry and temperature chaos in mixed spherical spin glasses at low temperature: The perturbative regime, Comm. Pure Appl. Math. 73, 1732 (2019), doi:10.1002/cpa.21875. · Zbl 1453.82089 · doi:10.1002/cpa.21875
[51] A. Montanari and F. Ricci-Tersenghi, On the nature of the low-temperature phase in dis-continuous mean-field spin glasses, Eur. Phys. J. B -Condens. Matter 33, 339 (2003), doi:10.1140/epjb/e2003-00174-7. · doi:10.1140/epjb/e2003-00174-7
[52] A. Montanari and F. Ricci-Tersenghi, Cooling-schedule dependence of the dynamics of mean-field glasses, Phys. Rev. B 70, 134406 (2004), doi:10.1103/PhysRevB.70.134406. · doi:10.1103/PhysRevB.70.134406
[53] L. F. Cugliandolo, Dynamics of glassy systems, (arXiv preprint) doi:10.48550/arXiv.cond-mat/0210312. · doi:10.48550/arXiv.cond-mat/0210312
[54] T. Castellani and A. Cavagna, Spin-glass theory for pedestrians, J. Stat. Mech. P05012 (2005), doi:10.1088/1742-5468/2005/05/P05012. · Zbl 1456.82490 · doi:10.1088/1742-5468/2005/05/P05012
[55] G. B. Arous, A. Dembo and A. Guionnet, Cugliandolo-Kurchan equations for dynamics of spin-glasses, Probab. Theory Relat. Fields 136, 619 (2006), doi:10.1007/s00440-005-0491-y. · Zbl 1109.82021 · doi:10.1007/s00440-005-0491-y
[56] F. Caltagirone, G. Parisi and T. Rizzo, Critical off-equilibrium dynamics in glassy systems, Phys. Rev. E 87, 032134 (2013), doi:10.1103/PhysRevE.87.032134. · doi:10.1103/PhysRevE.87.032134
[57] E. Agoritsas, G. Biroli, P. Urbani and F. Zamponi, Out-of-equilibrium dynamical mean-field equations for the perceptron model, J. Phys. A: Math. Theor. 51, 085002 (2018), doi:10.1088/1751-8121/aaa68d. · Zbl 1391.82047 · doi:10.1088/1751-8121/aaa68d
[58] F. Krzakala and J. Kurchan, Landscape analysis of constraint satisfaction problems, Phys. Rev. E 76, 021122 (2007), doi:10.1103/PhysRevE.76.021122. · doi:10.1103/PhysRevE.76.021122
[59] S. Franz and G. Parisi, Quasi-equilibrium in glassy dynamics: An algebraic view, J. Stat. Mech. P02003 (2013), doi:10.1088/1742-5468/2013/02/P02003. · doi:10.1088/1742-5468/2013/02/P02003
[60] S. Franz, G. Parisi and P. Urbani, Quasi-equilibrium in glassy dynamics: A liquid theory approach, J. Phys. A: Math. Theor. 48, 19FT01 (2015), doi:10.1088/1751-8113/48/19/19FT01. · Zbl 1323.82044 · doi:10.1088/1751-8113/48/19/19FT01
[61] S. Franz, G. Parisi, F. Ricci-Tersenghi and P. Urbani, Quasi equilibrium construction for the long time limit of glassy dynamics, J. Stat. Mech. P10010 (2015), doi:10.1088/1742-5468/2015/10/P10010. · Zbl 1456.82911 · doi:10.1088/1742-5468/2015/10/P10010
[62] B. Kim and A. Latz, The dynamics of the spherical p-spin model: From microscopic to asymp-totic, Europhys. Lett. 53, 660 (2001), doi:10.1209/epl/i2001-00202-4. · doi:10.1209/epl/i2001-00202-4
[63] A. Altieri, G. Biroli and C. Cammarota, Dynamical mean-field theory and aging dynamics, J. Phys. A: Math. Theor. 53, 375006 (2020), doi:10.1088/1751-8121/aba3dd. · Zbl 1519.82134 · doi:10.1088/1751-8121/aba3dd
[64] S. Franz and M. Mézard, On mean field glassy dynamics out of equilibrium, Phys. A: Stat. Mech. Appl. 210, 48 (1994), doi:10.1016/0378-4371(94)00057-3. · doi:10.1016/0378-4371(94)00057-3
[65] G. A. Baker Jr, Padé approximant, Scholarpedia 7, 9756 (2012), doi:10.4249/scholarpedia.9756. · doi:10.4249/scholarpedia.9756
[66] K. Bhattacharyya, Asymptotic response of observables from divergent power-series expan-sions, Phys. Rev. A 39, 6124 (1989), doi:10.1103/PhysRevA.39.6124. · doi:10.1103/PhysRevA.39.6124
[67] R. Monasson, Structural glass transition and the entropy of the metastable states, Phys. Rev. Lett. 75, 2847 (1995), doi:10.1103/PhysRevLett.75.2847. · doi:10.1103/PhysRevLett.75.2847
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.