×

Glass phenomenology in the hard matrix model. (English) Zbl 1539.82118

Summary: We introduce a new toy model for the study of glasses: the hard-matrix model. This may be viewed as a single particle moving on \(\mathrm{SO}(N)\), where there is a potential proportional to the one-norm of the matrix. The ground states of the model are ‘crystals’ where all matrix elements have the same magnitude. These are the Hadamard matrices when \(N\) is divisible by four. Just as finding the latter has challenged mathematicians, our model fails to find them upon cooling and instead shows all the behaviors that characterize physical glasses. With simulations we have located the first-order crystallization temperature, the Kauzmann temperature where the glass would have the same entropy as the crystal, as well as the standard, measurement-time dependent glass transition temperature. Our model also brings to light a new kind of elementary excitation special to the glass phase: the rubicon. In our model these are associated with the finite density of matrix elements near zero, the maximum in their contribution to the energy. Rubicons enable the system to cross between basins without thermal activation, a possibility not much discussed in the standard landscape picture. We use these modes to explain the slow dynamics in our model and speculate about their role in its quantum extension in the context of many-body localization.

MSC:

82C05 Classical dynamic and nonequilibrium statistical mechanics (general)
81T32 Matrix models and tensor models for quantum field theory
05B20 Combinatorial aspects of matrices (incidence, Hadamard, etc.)
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
82D30 Statistical mechanics of random media, disordered materials (including liquid crystals and spin glasses)

Software:

OEIS; kepler98

References:

[1] Kamien, R. D.; Liu, A. J., Why is random close packing reproducible?, Phys. Rev. Lett., 99 (2007) · doi:10.1103/physrevlett.99.155501
[2] Cugliandolo, L. F.; Kurchan, J.; Parisi, G.; Ritort, F., Matrix models as solvable glass models, Phys. Rev. Lett., 74, 1012 (1995) · doi:10.1103/physrevlett.74.1012
[3] Soljăić, M.; Wilczek, F., Minimal potentials with very many minima, Phys. Rev. Lett., 84, 2285 (2000) · Zbl 1042.81535 · doi:10.1103/PhysRevLett.84.2285
[4] Crisanti, A.; Sommers, H-J, The spherical p-spin interaction spin glass model: the statics, Z. Phys. B, 87, 341-354 (1992) · doi:10.1007/bf01309287
[5] Crisanti, A.; Horner, H.; Sommers, H. J., The spherical p-spin interaction spin-glass model, Z. Phys. B, 92, 257-271 (1993) · doi:10.1007/BF01312184
[6] Castellani, T.; Cavagna, A., Spin-glass theory for pedestrians, J. Stat. Mech. (2005) · Zbl 1456.82490 · doi:10.1088/1742-5468/2005/05/p05012
[7] Hedayat, A.; Wallis, W. D., Hadamard matrices and their applications, Ann. Stat., 6, 1184-1238 (1978) · Zbl 0401.62061 · doi:10.1214/aos/1176344370
[8] Hales, T., A proof of the Kepler conjecture, Ann. Math., 162, 1065-1185 (2005) · Zbl 1096.52010 · doi:10.4007/annals.2005.162.1065
[9] Kharaghani, H.; Tayfeh-Rezaie, B., On the classification of Hadamard matrices of order 32, J. Comb. Des., 18, 328-336 (2010) · Zbl 1209.05037 · doi:10.1002/jcd.20245
[10] Sloane, N. J A.; Plouffe, S., Online encyclopedia of integer sequences (2019)
[11] de Launey, W.; Gordon, D. M., On the density of the set of known Hadamard orders, Cryptogr. Commun., 2, 233-246 (2010) · Zbl 1198.94090 · doi:10.1007/s12095-010-0028-9
[12] Mau, S-C; Huse, D. A., Stacking entropy of hard-sphere crystals, Phys. Rev. E, 59, 4396 (1999) · doi:10.1103/physreve.59.4396
[13] Ponting, F. W.; Potter, H. S A., The volume of orthogonal and unitary space, Q. J. Math., os-20, 146-154 (1949) · Zbl 0034.29603 · doi:10.1093/qmath/os-20.1.146
[14] Katzgraber, H. G.; Trebst, S.; Huse, D. A.; Troyer, M., Feedback-optimized parallel tempering Monte Carlo, J. Stat. Mech. (2006) · Zbl 1459.82365 · doi:10.1088/1742-5468/2006/03/p03018
[15] Phillips, J. C., Topology of covalent non-crystalline solids: I. Short-range order in chalcogenide alloys, J. Non-Cryst. Solids, 34, 153-181 (1979) · doi:10.1016/0022-3093(79)90033-4
[16] Diaconis, P., Patterns in eigenvalues: the 70th Josiah Willard Gibbs lecture, Bull. Am. Math. Soc., 40, 155-178 (2003) · Zbl 1161.15302 · doi:10.1090/s0273-0979-03-00975-3
[17] Ediger, M. D.; Angell, C. A.; Nagel, S. R., Supercooled liquids and glasses, J. Phys. Chem., 100, 13200-13212 (1996) · doi:10.1021/jp953538d
[18] Debenedetti, P. G.; Stillinger, F. H., Supercooled liquids and the glass transition, Nature, 410, 259 (2001) · doi:10.1038/35065704
[19] Kauzmann, W., The nature of the glassy state and the behavior of liquids at low temperatures, Chem. Rev., 43, 219-256 (1948) · doi:10.1021/cr60135a002
[20] Ceperley, D. M.; Pollock, E. L., Path-integral computation of the low-temperature properties of liquid He_4, Phys. Rev. Lett., 56, 351 (1986) · doi:10.1103/physrevlett.56.351
[21] Anderson, P. W., Absence of diffusion in certain random lattices, Phys. Rev., 109, 1492 (1958) · doi:10.1103/physrev.109.1492
[22] Nandkishore, R.; Huse, D. A., Many-body localization and thermalization in quantum statistical mechanics, Annu. Rev. Condens. Matter Phys., 6, 15-38 (2015) · doi:10.1146/annurev-conmatphys-031214-014726
[23] Charbonneau, P.; Kurchan, J.; Parisi, G.; Urbani, P.; Zamponi, F., Glass and jamming transitions: from exact results to finite-dimensional descriptions, Annu. Rev. Condens. Matter Phys., 8, 265-288 (2017) · doi:10.1146/annurev-conmatphys-031016-025334
[24] Hickey, J. M.; Genway, S.; Garrahan, J. P., Signatures of many-body localisation in a system without disorder and the relation to a glass transition, J. Stat. Mech. (2016) · doi:10.1088/1742-5468/2016/05/054047
[25] Haydock, R., The electronic structure of weak, random, two- and three-dimensional potentials, Phil. Mag. B, 43, 203-218 (1981) · doi:10.1080/13642818108221895
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.