×

A new spin on optimal portfolios and ecological equilibria. (English) Zbl 1536.91296

Summary: We consider the classical problem of optimal portfolio construction with the constraint that no short position is allowed, or equivalently the valid equilibria of multispecies Lotka-Volterra equations with self-regulation in the special case where the interaction matrix is of unit rank, corresponding to species competing for a common resource. We compute the average number of solutions and show that its logarithm grows as \(N^\alpha\), where \(N\) is the number of assets or species and \(\alpha \leq 2/3\) depends on the interaction matrix distribution. We conjecture that the most likely number of solutions is much smaller and related to the typical sparsity \(m(N)\) of the solutions, which we compute explicitly. We also find that the solution landscape is similar to that of spin-glasses, i.e. very different configurations are quasi-degenerate. Correspondingly, ‘disorder chaos’ is also present in our problem. We discuss the consequence of such a property for portfolio construction and ecologies, and question the meaning of rational decisions when there is a very large number ‘satisficing’ solutions.

MSC:

91G10 Portfolio theory
91B80 Applications of statistical and quantum mechanics to economics (econophysics)

References:

[1] Amit, D. J.; Gutfreund, H.; Sompolinsky, H., Spin-glass models of neural networks, Phys. Rev. A, 32, 1007 (1985) · doi:10.1103/physreva.32.1007
[2] Gardner, E.; Derrida, B.; Mottishaw, P., Zero temperature parallel dynamics for infinite range spin glasses and neural networks, J. Phys. France, 48, 741-755 (1987) · doi:10.1051/jphys:01987004805074100
[3] Hwang, S.; Folli, V.; Lanza, E.; Parisi, G.; Ruocco, G.; Zamponi, F., On the number of limit cycles in asymmetric neural networks, J. Stat. Mech. (2019) · doi:10.1088/1742-5468/ab11e3
[4] Rosenblatt, F., The perceptron: a probabilistic model for information storage and organization in the brain, Psychol. Rev., 65, 386 (1958) · doi:10.1037/h0042519
[5] Engel, A.; Van den Broeck, C., Statistical Mechanics of Learning (2001), Cambridge: Cambridge University Press, Cambridge · Zbl 0984.82034
[6] Markowitz, H., Portfolio selection^*, J. Finance, 7, 77-91 (1952) · doi:10.1111/j.1540-6261.1952.tb01525.x
[7] Ciliberti, S.; Mézard, M., Risk minimization through portfolio replication, Eur. Phys. J. B, 57, 175-180 (2007) · Zbl 1189.91191 · doi:10.1140/epjb/e2007-00130-7
[8] Varga-Haszonits, I.; Caccioli, F.; Kondor, I., Replica approach to mean-variance portfolio optimization, J. Stat. Mech. (2016) · Zbl 1456.91118 · doi:10.1088/1742-5468/aa4f9c
[9] Kondor, I.; Papp, G.; Caccioli, F., Analytic solution to variance optimization with no short positions, J. Stat. Mech. (2017) · Zbl 1456.91116 · doi:10.1088/1742-5468/aa9684
[10] Pafka, S.; Kondor, I., Noisy covariance matrices and portfolio optimization, Eur. Phys. J. B, 27, 277-280 (2002) · doi:10.1140/epjb/e20020153
[11] Pafka, S.; Kondor, I., Estimated correlation matrices and portfolio optimization, Physica A, 343, 623-634 (2004) · doi:10.1016/j.physa.2004.05.079
[12] Bun, J.; Bouchaud, J-P; Potters, M., Cleaning large correlation matrices: tools from random matrix theory, Phys. Rep., 666, 1-109 (2017) · Zbl 1359.15031 · doi:10.1016/j.physrep.2016.10.005
[13] Galluccio, S.; Bouchaud, J. P.; Potters, M., Rational decisions, random matrices and spin glasses, Physica A, 259, 449-456 (1998) · doi:10.1016/s0378-4371(98)00332-x
[14] Clarke, R.; De Silva, H.; Thorley, S., Minimum-variance portfolio composition, J. Portfolio Manage., 37, 31-45 (2011) · doi:10.3905/jpm.2011.37.2.031
[15] Lehalle, C-A; Simon, G., Portfolio selection with active strategies: how long only constraints shape convictions, J. Asset. Manage., 1-21 (2021) · doi:10.1057/s41260-021-00219-z
[16] Reigneron, P-A; Nguyen, V.; Ciliberti, S.; Seager, P.; Bouchaud, J-P, Agnostic allocation portfolios: a sweet spot in the risk-based jungle?, J. Portfolio Manage., 46, 22-38 (2020) · doi:10.2139/ssrn.3403154
[17] Tikhonov, M.; Monasson, R., Collective phase in resource competition in a highly diverse ecosystem, Phys. Rev. Lett., 118 (2017) · doi:10.1103/physrevlett.118.048103
[18] Advani, M.; Bunin, G.; Mehta, P., Statistical physics of community ecology: a cavity solution to MacArthur’s consumer resource model, J. Stat. Mech. (2018) · Zbl 1459.92153 · doi:10.1088/1742-5468/aab04e
[19] Landmann, S.; Engel, A., Systems of random linear equations and the phase transition in MacArthur’s resource-competition model, Europhys. Lett., 124 (2018) · doi:10.1209/0295-5075/124/18004
[20] Biroli, G.; Bunin, G.; Cammarota, C., Marginally stable equilibria in critical ecosystems, New J. Phys., 20 (2018) · doi:10.1088/1367-2630/aada58
[21] Roy, F.; Biroli, G.; Bunin, G.; Cammarota, C., Numerical implementation of dynamical mean field theory for disordered systems: application to the Lotka-Volterra model of ecosystems, J. Phys. A: Math. Theor., 52 (2019) · Zbl 1509.60126 · doi:10.1088/1751-8121/ab1f32
[22] Guy, B., Ecological communities with Lotka-Volterra dynamics, Phys. Rev. E, 95 (2017) · doi:10.1103/physreve.95.042414
[23] Laloux, L.; Cizeau, P.; Bouchaud, J-P; Potters, M., Noise dressing of financial correlation matrices, Phys. Rev. Lett., 83, 1467 (1999) · doi:10.1103/physrevlett.83.1467
[24] Hager, W. W., Updating the inverse of a matrix, SIAM Rev., 31, 221-239 (1989) · Zbl 0671.65018 · doi:10.1137/1031049
[25] May, R. M., Will a large complex system be stable?, Nature, 238, 413-414 (1972) · doi:10.1038/238413a0
[26] Courchamp, F.; Clutton-Brock, T.; Grenfell, B., Inverse density dependence and the Allee effect, Trends Ecol. Evol., 14, 405-410 (1999) · doi:10.1016/s0169-5347(99)01683-3
[27] Castellani, T.; Cavagna, A., Spin-glass theory for pedestrians, J. Stat. Mech., 215-266 (2005) · Zbl 1456.82490 · doi:10.1088/1742-5468/2005/05/p05012
[28] Bray, A. J.; Moore, M. A., Metastable states in spin glasses, J. Phys. C: Solid State Phys., 13, L469-L476 (1980) · doi:10.1088/0022-3719/13/19/002
[29] Bray, A. J.; Moore, M. A., Metastable states in the solvable spin glass model, J. Phys. A: Gen. Phys., 14, L377-L383 (1981) · doi:10.1088/0305-4470/14/9/012
[30] Sankaran, J. K.; Patil, A. A., On the optimal selection of portfolios under limited diversification, J. Banking Finance, 23, 1655-1666 (1999) · doi:10.1016/s0378-4266(99)00023-0
[31] Schnabel, S.; Janke, W., Distribution of metastable states of Ising spin glasses, Phys. Rev. B, 97 (2018) · doi:10.1103/physrevb.97.174204
[32] Thouless, D. J.; Anderson, P. W.; Palmer, R. G., Solution of ’Solvable model of a spin glass’, Phil. Mag., 35, 593-601 (1977) · doi:10.1080/14786437708235992
[33] Courant, R.; David Hilbert, Methods of Mathematical Physics Partial Differential Equations, vol 2 (1962), New York: Wiley, New York · Zbl 0099.29504
[34] Mézard, M.; Parisi, G.; Virasoro, M., Spin Glass Theory and Beyond: An Introduction to the Replica Method and Its Applications, volume 9 (1987), Singapore: World Scientific, Singapore · Zbl 0992.82500
[35] Azcoiti, V.; Follana, E.; Ritort, F., Static chaos in spin glasses: the case of quenched disorder perturbations, J. Phys. A: Math. Gen., 28, 3863 (1995) · Zbl 0875.82051 · doi:10.1088/0305-4470/28/14/008
[36] Krzakala, F.; Bouchaud, J. P., Disorder chaos in spin glasses, Europhys. Lett., 72, 472-478 (2005) · doi:10.1209/epl/i2005-10256-2
[37] Monthus, C.; Garel, T., Chaos properties of the one-dimensional long-range Ising spin-glass, J. Stat. Mech. (2014) · Zbl 1456.82924 · doi:10.1088/1742-5468/2014/03/p03020
[38] Kondor, I., On chaos in spin glasses, J. Phys. A: Math. Gen., 22, L163 (1989) · doi:10.1088/0305-4470/22/5/005
[39] Moran, J.; Bouchaud, J-P, May’s instability in large economies, Phys. Rev. E, 100 (2019) · doi:10.1103/physreve.100.032307
[40] Dessertaine, T.; Moran, J.; Benzaquen, M.; Bouchaud, J-P, Tâtonnement, approach to equilibrium and excess volatility in firm networks (2020)
[41] Berg, J.; Engel, A., Matrix games, mixed strategies, and statistical mechanics, Phys. Rev. Lett., 81, 4999 (1998) · doi:10.1103/physrevlett.81.4999
[42] Spanier, J.; Oldham, K. B., An Atlas of Functions, 405-410 (1987), New York: Hemisphere, New York · Zbl 0618.65007
[43] Moll, V. H., Special Integrals of Gradshteyn and Ryzhik: the Proofs, volume 1 (2015), Boca Raton, FL: CRC Press, Boca Raton, FL · Zbl 1320.26001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.