×

Two-dimensional Ising and Potts model with long-range bond disorder: a renormalization group approach. (English) Zbl 07906144

Summary: In this paper we provide new analytic results on two-dimensional \(q\)-Potts models (\(q \geq 2\)) in the presence of bond disorder correlations which decay algebraically with distance with exponent \(a\). In particular, our results are valid for the long-range bond disordered Ising model (\(q = 2\)). We implement a renormalization group perturbative approach based on conformal perturbation theory. We extend to the long-range case the RG scheme used in [V. Dotsenko et al., Nucl. Phys. B 455 701-23] for the short-range disorder. Our approach is based on a 2-loop order double expansion in the positive parameters \((2-a)\) and \((q-2)\). We will show that the Weinrib-Halperin conjecture for the long-range thermal exponent can be violated for a non-Gaussian disorder. We compute the central charges of the long-range fixed points finding a very good agreement with numerical measurements.

MSC:

82Bxx Equilibrium statistical mechanics
82Dxx Applications of statistical mechanics to specific types of physical systems
82Cxx Time-dependent statistical mechanics (dynamic and nonequilibrium)

References:

[1] F. Chippari, M. Picco and R. Santachiara, Long-range quenched bond disorder in the bidi-mensional Potts model, J. Stat. Mech.: Theoory Exp. 043301 (2023), doi:10.1088/1742-5468/acc72a. · Zbl 1539.82329 · doi:10.1088/1742-5468/acc72a
[2] A. Weinrib and B. I. Halperin, Critical phenomena in systems with long-range-correlated quenched disorder, Phys. Rev. B 27, 413 (1983), doi:10.1103/PhysRevB.27.413. · doi:10.1103/PhysRevB.27.413
[3] J. Honkonen and M. Y. Nalimov, Crossover between field theories with short-range and long-range exchange or correlations, J. Phys. A: Math. Gen. 22, 751 (1989), doi:10.1088/0305-4470/22/6/024. · doi:10.1088/0305-4470/22/6/024
[4] A. Weinrib, Long-range correlated percolation, Phys. Rev. B 29, 387 (1984), doi:10.1103/PhysRevB.29.387. · doi:10.1103/PhysRevB.29.387
[5] A. L. Korzhenevskii, A. A. Luzhkov and W. Schirmacher, Critical behavior of crystals with long-range correlations caused by point defects with degenerate internal degrees of freedom, Phys. Rev. B 50, 3661 (1994), doi:10.1103/PhysRevB.50.3661. · doi:10.1103/PhysRevB.50.3661
[6] V. V. Prudnikov and A. A. Fedorenko, Critical behaviour of 3D systems with long-range correlated quenched defects, J. Phys. A: Math. Gen. 32, L399 (1999), doi:10.1088/0305-4470/32/36/102. · Zbl 0962.82037 · doi:10.1088/0305-4470/32/36/102
[7] V. V. Prudnikov, P. V. Prudnikov and A. A. Fedorenko, Field-theory approach to critical behavior of systems with long-range correlated defects, Phys. Rev. B 62, 8777 (2000), doi:10.1103/PhysRevB.62.8777. · doi:10.1103/PhysRevB.62.8777
[8] H. G. Ballesteros and G. Parisi, Site-diluted three-dimensional Ising model with long-range correlated disorder, Phys. Rev. B 60, 12912 (1999), doi:10.1103/PhysRevB.60.12912. · doi:10.1103/PhysRevB.60.12912
[9] V. Prudnikov, P. Prudnikov, S. Dorofeev and V. Kolesnikov, Monte Carlo studies of critical behaviour of systems with long-range correlated disoder, Condens. Matter Phys. 8, 213 (2005), doi:10.5488/CMP.8.1.213. · doi:10.5488/CMP.8.1.213
[10] S. Kazmin and W. Janke, Critical exponent ν of the Ising model in three dimensions with long-range correlated site disorder analyzed with Monte Carlo techniques, Phys. Rev. B 102, 174206 (2020), doi:10.1103/PhysRevB.102.174206. · doi:10.1103/PhysRevB.102.174206
[11] S. Kazmin and W. Janke, Critical exponents of the Ising model in three dimensions with long-range power-law correlated site disorder: A Monte Carlo study, Phys. Rev. B 105, 214111 (2022), doi:10.1103/PhysRevB.105.214111. · doi:10.1103/PhysRevB.105.214111
[12] M. A. Rajabpour and R. Sepehrinia, Explicit renormalization group for d = 2 random bond Ising model with long-range correlated disorder, J. Stat. Phys. 130, 815 (2007), doi:10.1007/s10955-007-9443-5. · Zbl 1214.82038 · doi:10.1007/s10955-007-9443-5
[13] M. Dudka, A. A. Fedorenko, V. Blavatska and Y. Holovatch, Critical behavior of the two-dimensional Ising model with long-range correlated disorder, Phys. Rev. B 93, 224422 (2016), doi:10.1103/PhysRevB.93.224422. · doi:10.1103/PhysRevB.93.224422
[14] G. Murthy, Explicit renormalization-group analysis of the D = 2 random-bond Ising model, Phys. Rev. B 36, 766 (1987), doi:10.1103/PhysRevB.36.766. · doi:10.1103/PhysRevB.36.766
[15] V. Dotsenko, M. Picco and P. Pujol, Renormalisation-group calculation of correlation func-tions for the 2D random bond Ising and Potts models, Nucl. Phys. B 455, 701 (1995), doi:10.1016/0550-3213(95)00534-Y. · doi:10.1016/0550-3213(95)00534-Y
[16] M. H. W. Chan, K. I. Blum, S. Q. Murphy, G. K. S. Wong and J. D. Reppy, Dis-order and the superfluid transition in liquid 4 He, Phys. Rev. Lett. 61, 1950 (1988), doi:10.1103/PhysRevLett.61.1950. · doi:10.1103/PhysRevLett.61.1950
[17] R. Paredes V. and C. Vásquez, Three-dimensional Ising model confined in low-porosity aerogels: A Monte Carlo study, Phys. Rev. B 74, 054201 (2006), doi:10.1103/PhysRevB.74.054201. · doi:10.1103/PhysRevB.74.054201
[18] S. Ribault, Conformal field theory on the plane, (arXiv preprint) doi:10.48550/arXiv.1406.4290. · doi:10.48550/arXiv.1406.4290
[19] M. I. Marqués, J. A. Gonzalo and J. Íñiguez, Universality class of thermally diluted Ising systems at criticality, Phys. Rev. E 62, 191 (2000), doi:10.1103/PhysRevE.62.191. · doi:10.1103/PhysRevE.62.191
[20] C. Chatelain, Griffiths phase and critical behavior of the two-dimensional Potts models with long-range correlated disorder, Phys. Rev. E 89, 032105 (2014), doi:10.1103/PhysRevE.89.032105. · doi:10.1103/PhysRevE.89.032105
[21] H. Saleur, Partition functions of the two-dimensional Ashkin-Teller model on the critical line, J. Phys. A: Math. Gen. 20, L1127 (1987), doi:10.1088/0305-4470/20/16/016. · doi:10.1088/0305-4470/20/16/016
[22] P. di Francesco, H. Saleur and J. B. Zuber, Relations between the Coulomb gas picture and conformal invariance of two-dimensional critical models, J. Stat. Phys. 49, 57 (1987), doi:10.1007/bf01009954. · Zbl 0960.82507 · doi:10.1007/bf01009954
[23] T. Castellani and A. Cavagna, Spin-glass theory for pedestrians, J. Stat. Mech.: Theory Exp. P05012 (2005), doi:10.1088/1742-5468/2005/05/p05012. · Zbl 1456.82490 · doi:10.1088/1742-5468/2005/05/p05012
[24] J. Cardy, Scaling and renormalization in statistical physics, Cambridge University Press, Cambridge, UK, ISBN 9780521499590 (1996), doi:10.1017/CBO9781316036440. · doi:10.1017/CBO9781316036440
[25] J. L. Jacobsen, S. Ribault and H. Saleur, Spaces of states of the two-dimensional O(n) and Potts models, SciPost Phys. 14, 092 (2023), doi:10.21468/scipostphys.14.5.092. · Zbl 07902435 · doi:10.21468/scipostphys.14.5.092
[26] A. W. W. Ludwig, Critical behavior of the two-dimensional random q-state Potts model by expansion in (q -2), Nucl. Phys. B 285, 97 (1987), doi:10.1016/0550-3213(87)90330-0. · doi:10.1016/0550-3213(87)90330-0
[27] A. W. W. Ludwig and J. L. Cardy, Perturbative evaluation of the conformal anomaly at new critical points with applications to random systems, Nucl. Phys. B 285, 687 (1987), doi:10.1016/0550-3213(87)90362-2. · doi:10.1016/0550-3213(87)90362-2
[28] A. W. W. Ludwig, Infinite hierarchies of exponents in a diluted ferromagnet and their inter-pretation, Nucl. Phys. B 330, 639 (1990), doi:10.1016/0550-3213(90)90126-x. · doi:10.1016/0550-3213(90)90126-x
[29] V. S. Dotsenko, V. S. Dotsenko, M. Picco and P. Pujol, Renormalization group solution for the two-dimensional random bond Potts model with broken replica symmetry, Europhys. Lett. 32, 425 (1995), doi:10.1209/0295-5075/32/5/008. · doi:10.1209/0295-5075/32/5/008
[30] V. S. Dotsenko, V. S. Dotsenko and M. Picco, Random bond Potts model: The test of the replica symmetry breaking, Nucl. Phys. B 520, 633 (1998), doi:10.1016/s0550-3213(98)00183-7. · Zbl 0947.82007 · doi:10.1016/s0550-3213(98)00183-7
[31] C. Chatelain and B. Berche, Universality and multifractal behaviour of spin-spin correlation functions in disordered Potts models, Nucl. Phys. B 572, 626 (2000), doi:10.1016/s0550-3213(00)00050-x. · Zbl 1068.82519 · doi:10.1016/s0550-3213(00)00050-x
[32] C. Behan, L. Rastelli, S. Rychkov and B. Zan, Long-range critical expo-nents near the short-range crossover, Phys. Rev. Lett. 118, 241601 (2017), doi:10.1103/physrevlett.118.241601. · doi:10.1103/physrevlett.118.241601
[33] C. Behan, L. Rastelli, S. Rychkov and B. Zan, A scaling theory for the long-range to short-range crossover and an infrared duality, J. Phys. A: Math. Theor. 50, 354002 (2017), doi:10.1088/1751-8121/aa8099. · Zbl 1376.82012 · doi:10.1088/1751-8121/aa8099
[34] H. W. J. Blöte, J. L. Cardy and M. P. Nightingale, Conformal invariance, the central charge, and universal finite-size amplitudes at criticality, Phys. Rev. Lett. 56, 742 (1986), doi:10.1103/PhysRevLett.56.742. · doi:10.1103/PhysRevLett.56.742
[35] N. Javerzat, M. Picco and R. Santachiara, Two-point connectivity of two-dimensional crit-ical Q-Potts random clusters on the torus, J. Stat. Mech.: Theory Exp. 023101 (2020), doi:10.1088/1742-5468/ab6331. · Zbl 1459.82047 · doi:10.1088/1742-5468/ab6331
[36] H. W. J. Blöte, J. L. Cardy and M. P. Nightingale, Conformal invariance, the central charge, and universal finite-size amplitudes at criticality, Phys. Rev. Lett. 56, 742 (1986), doi:10.1103/PhysRevLett.56.742. · doi:10.1103/PhysRevLett.56.742
[37] I. Affleck, Universal term in the free energy at a critical point and the conformal anomaly, Phys. Rev. Lett. 56, 746 (1986), doi:10.1103/PhysRevLett.56.746. · doi:10.1103/PhysRevLett.56.746
[38] B. Derrida, Can disorder induce several phase transitions?, Phys. Rep. 103, 29 (1984), doi:10.1016/0370-1573(84)90063-2. · doi:10.1016/0370-1573(84)90063-2
[39] J. Cardy and J. L. Jacobsen, Critical behavior of random-bond Potts models, Phys. Rev. Lett. 79, 4063 (1997), doi:10.1103/physrevlett.79.4063. · Zbl 0944.82009 · doi:10.1103/physrevlett.79.4063
[40] J. L. Jacobsen and J. Cardy, Critical behaviour of random-bond Potts models: A transfer matrix study, Nucl. Phys. B 515, 701 (1998), doi:10.1016/S0550-3213(98)00024-8. · Zbl 0949.82018 · doi:10.1016/S0550-3213(98)00024-8
[41] V. S. Dotsenko, Off the critical point by perturbation: The Ising model spin-spin correlator, Nucl. Phys. B 314, 687 (1989), doi:10.1016/0550-3213(89)90413-6. · doi:10.1016/0550-3213(89)90413-6
[42] V. S. Dotsenko, M. Picco and P. Pujol, Spin-spin critical point correlation functions for the 2D random bond Ising and Potts models, Phys. Lett. B 347, 113 (1995), doi:10.1016/0370-2693(95)00035-j. · doi:10.1016/0370-2693(95)00035-j
[43] V. S. Dotsenko, Série de cours sur la théorie conforme, Hal (2006), https://cel.hal.science/ cel-00092929/file/conforme.pdf.
[44] V. S. Dotsenko and V. A. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models, Nucl. Phys. B 240, 312 (1984), doi:10.1016/0550-3213(84)90269-4. · doi:10.1016/0550-3213(84)90269-4
[45] V. S. Dotsenko and V. A. Fateev, Four-point correlation functions and the operator algebra in 2D conformal invariant theories with central charge c ≤ 1, Nucl. Phys. B 251, 691 (1985), doi:10.1016/s0550-3213(85)80004-3. · doi:10.1016/s0550-3213(85)80004-3
[46] V. S. Dotsenko and V. A. Fateev, Operator algebra of two-dimensional conformal the-ories with central charge c ≤ 1, Phys. Lett. B 154, 291 (1985), doi:10.1016/0370-2693(85)90366-1. · doi:10.1016/0370-2693(85)90366-1
[47] A. B. Zamolodchikov, “Irreversibility” of the flux of the renormalization group in a 2D field theory, Sov. J. Exp. Theor. Phys. Lett. 43, 730 (1986).
[48] M. F. Paulos, S. Rychkov, B. C. van Rees and B. Zan, Conformal invariance in the long-range Ising model, Nucl. Phys. B 902, 246 (2016), doi:10.1016/j.nuclphysb.2015.10.018. · Zbl 1332.82017 · doi:10.1016/j.nuclphysb.2015.10.018
[49] N. Javerzat, S. Grijalva, A. Rosso and R. Santachiara, Topological effects and confor-mal invariance in long-range correlated random surfaces, SciPost Phys. 9, 050 (2020), doi:10.21468/SciPostPhys.9.4.050. · doi:10.21468/SciPostPhys.9.4.050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.