×

Multiplicative Hitchin systems and supersymmetric gauge theory. (English) Zbl 1423.14081

The aim of this carefully written paper is to compare five different perspectives on a single moduli space: three coming from geometry and representation theory, and two coming from supersymmetric gauge theory. By leveraging these multiple perspectives the authors will equip their common moduli space with the structure of a completely integrable system which they call the multiplicative Hitchin system. Multiplicative Hitchin systems are analogues of Hitchin’s integrable system based on moduli spaces of \(G\)-Higgs bundles on a curve \(\mathcal{C}\) where the Higgs field is groupvalued, rather than Lie algebra valued. The authors discuss the relationship between several occurences of these moduli spaces in geometry and supersymmetric gauge theory, with a particular focus on the case where \(\mathcal{C}=\mathbb{CP}^1\) with a fixed framing at infinity. In this case they prove that the identification between multiplicative Higgs bundles and periodic monopoles proved by Charbonneau and Hurtubise can be promoted to an equivalence of hyperkähler spaces, and analyze the twistor rotation for the multiplicative Hitchin system. They also discuss quantization of these moduli spaces, yielding the modules for the Yangian \(Y(g)\) discovered by Gerasimov, Kharchev, Lebedev and Oblezin. The paper is divided into two parts. In Part A the authors will investigate the symplectic geometry of the moduli space of multiplicative Higgs bundles, and in Part B they will study the connection between multiplicative Higgs bundles and periodic monopoles, and the hyperkähler geometry of these moduli spaces.

MSC:

14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
53D30 Symplectic structures of moduli spaces
17B37 Quantum groups (quantized enveloping algebras) and related deformations
53C07 Special connections and metrics on vector bundles (Hermite-Einstein, Yang-Mills)
81T60 Supersymmetric field theories in quantum mechanics
81T13 Yang-Mills and other gauge theories in quantum field theory
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)

References:

[1] Aganagic, M., Frenkel, E., Okounkov, A.: Quantum \[q\] q-Langlands correspondence. arXiv preprint arXiv:1701.03146 (2017) · Zbl 1422.22021
[2] Alexandrov, M., Kontsevich, M., Schwarz, A., Zaboronsky, O.: The geometry of the master equation and topological quantum field theory. Int. J. Modern Phys. A 12(7), 1405-1429 (1997) · Zbl 1073.81655 · doi:10.1142/S0217751X97001031
[3] Anchouche, B., Biswas, I.: Einstein-Hermitian connections on polystable principal bundles over a compact Kähler manifold. Am. J. Math. 123(2), 207-228 (2001) · Zbl 1007.53026 · doi:10.1353/ajm.2001.0007
[4] Arinkin, D., Gaitsgory, D.: Singular support of coherent sheaves and the geometric Langlands conjecture. Sel. Math. New Ser. 21(1), 1-199 (2015) · Zbl 1423.14085 · doi:10.1007/s00029-014-0167-5
[5] Arutyunov, G., Frolov, S., Medvedev, P.: Elliptic Ruijsenaars-Schneider model from the cotangent bundle over the two-dimensional current group. J. Math. Phys. 38, 5682-5689 (1997) · Zbl 0892.58039 · doi:10.1063/1.532160
[6] Arutyunov, G., Frolov, S., Medvedev, P.: Elliptic Ruijsenaars-Schneider model via the Poisson reduction of the affine Heisenberg double. J. Phys. A 30, 5051-5063 (1997) · Zbl 0925.81437 · doi:10.1088/0305-4470/30/14/016
[7] Ashwinkumar, M., Tan, M.-C., Zhao, Q.: Branes and categorifying integrable lattice models. arXiv preprint arXiv:1806.02821 (2018) · Zbl 1518.81079
[8] Atiyah, M., Hitchin, N.: The Geometry and Dynamics of Magnetic Monopoles. M. B. Porter Lectures. Princeton University Press, Princeton, NJ (1988) · Zbl 0671.53001 · doi:10.1515/9781400859306
[9] Avan, J., Frappat, L., Ragoucy, E.: Elliptic deformation of \[\cal{W}_N\] WN-algebras. arXiv preprint arXiv:1810.11410 (2018) · Zbl 1498.17026
[10] Baker, H.: Examples of the application of Newton’s polygon to the theory of singular points of algebraic functions. Trans. Camb. Philos. Soc. 15, 403 (1894)
[11] Baulieu, L.: \[{\rm SU}(5)\] SU(5)-invariant decomposition of ten-dimensional Yang-Mills supersymmetry. Phys. Lett. B 698(1), 63-67 (2011) · doi:10.1016/j.physletb.2010.12.044
[12] Beilinson, A., Drinfeld, V.: Quantization of Hitchin’s integrable system and Hecke eigensheaves. preprint, available at http://www.math.uchicago.edu/ mitya/langlands.html (1997). Accessed Sept 2019
[13] Biquard, O., Jardim, M.: Asymptotic behaviour and the moduli space of doubly-periodic instantons. J. Eur. Math. Soc. 3(4), 335-375 (2001) · Zbl 1005.53017 · doi:10.1007/s100970100032
[14] Bottacin, F.: Poisson structures on moduli spaces of sheaves over Poisson surfaces. Invent. Math. 121(2), 421-436 (1995) · Zbl 0829.14019 · doi:10.1007/BF01884307
[15] Bottacin, F.: Symplectic geometry on moduli spaces of stable pairs. Ann. Sci. École Norm. Sup. (4) 28(4), 391-433 (1995) · Zbl 0864.14004 · doi:10.24033/asens.1719
[16] Bottacin, F.: Poisson structures on moduli spaces of parabolic bundles on surfaces. Manuscr. Math. 103(1), 31-46 (2000) · Zbl 1077.14550 · doi:10.1007/PL00005855
[17] Bouthier, A.: La fibration de Hitchin-Frenkel-Ngô et son complexe d’intersection. arXiv preprint arXiv:1409.1275 (2014) · Zbl 1430.11068
[18] Bouthier, A.: Dimension des fibres de Springer affines pour les groupes. Transform. Groups 20(3), 615-663 (2015) · Zbl 1342.14099 · doi:10.1007/s00031-015-9326-9
[19] Braden, H., Dolgushev, V., Olshanetsky, M., Zotov, A.: Classical R matrices and the Feigin-Odesskii algebra via Hamiltonian and Poisson reductions. J. Phys. A 36, 6979-7000 (2003) · Zbl 1046.81077 · doi:10.1088/0305-4470/36/25/306
[20] Butson, D.: Omega backgrounds and boundary theories in twisted supersymmetric gauge theories. Forthcoming (2019)
[21] Calaque, D.; Pantev, T. (ed.); Simpson, C. (ed.); Toën, B. (ed.); Vaquié, M. (ed.); Vezzosi, G. (ed.), Lagrangian structures on mapping stacks and semi-classical TFTs, No. 643, 1-23 (2015), Providence, RI · Zbl 1349.14005 · doi:10.1090/conm/643/12894
[22] Calaque, D., Pantev, T., Toën, B., Vaquié, M., Vezzosi, G.: Shifted Poisson structures and deformation quantization. J. Topol. 10(2), 483-584 (2017) · Zbl 1428.14006 · doi:10.1112/topo.12012
[23] Charbonneau, B., Hurtubise, J.: Singular Hermitian-Einstein monopoles on the product of a circle and a Riemann surface. Int. Math. Res. Not. 2011(1), 175-216 (2010) · Zbl 1252.53036 · doi:10.1093/imrn/rnq059
[24] Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1995) · Zbl 0839.17010
[25] Chen, Heng-Yu., Dorey, Nick, Hollowood, Timothy J., Lee, Sungjay: A new 2d/4d duality via integrability. J. High Energy Phys. 16(9), 40 (2011) · Zbl 1301.81115 · doi:10.1007/JHEP09(2011)040
[26] Cherkis, S., Kapustin, A.: Singular monopoles and supersymmetric gauge theories in three dimensions. Nucl. Phys. B 525(1-2), 215-234 (1998) · Zbl 1031.81643 · doi:10.1016/S0550-3213(98)00341-1
[27] Cherkis, S., Kapustin, A.: Nahm transform for periodic monopoles and \[\cal{N}= 2N=2\] super Yang-Mills theory. Commun. Math. Phys. 218(2), 333-371 (2001) · Zbl 1003.53025 · doi:10.1007/PL00005558
[28] Cherkis, S., Kapustin, A.: Hyper-Kähler metrics from periodic monopoles. Phys. Rev. D 65(8), 084015 (2002) · doi:10.1103/PhysRevD.65.084015
[29] Chernyakov, Y., Levin, A., Olshanetsky, M., Zotov, A.: Quadratic algebras related to elliptic curves. arXiv e-prints arXiv:0710.1072 (2007) · Zbl 1160.37023
[30] Costello, K.: Renormalization and Effective Field Theory, vol. 170. American Mathematical Society, Providence (2011) · Zbl 1221.81004
[31] Costello, K.: Notes on supersymmetric and holomorphic field theories in dimensions 2 and 4. In Special Issue: In Honor of Dennis Sullivan. Pure and Applied Mathematics Quarterly, vol. 9 (2013) · Zbl 1299.14013 · doi:10.4310/PAMQ.2013.v9.n1.a3
[32] Costello, K.: Notes on supersymmetric and holomorphic field theories in dimensions 2 and 4. Pure Appl. Math. Q. 9(1), 73-165 (2013) · Zbl 1299.14013 · doi:10.4310/PAMQ.2013.v9.n1.a3
[33] Costello, K.: Supersymmetric gauge theory and the Yangian. arXiv preprint arXiv:1303.2632 (2013)
[34] Costello, K.: Integrable systems and quantum groups from quantum field theory. 2017. Lecture, String-Math, Hamburg (25 July 2017). https://stringmath2017.desy.de/sites/sites_conferences/site_stringmath2017/content/e45470/e56510/e56537/SM-Costello.pdf (2017). Accessed Sept 2019
[35] Costello, K., Yagi, J.: Unification of integrability in supersymmetric gauge theories. arXiv preprint arXiv:1810.01970 (2018) · Zbl 1527.81103
[36] Donagi, R.; Mason, L. (ed.), Geometry and integrability, No. 295, 21-59 (2003), Cambridge · Zbl 1067.14028
[37] Donagi, R., Gaitsgory, D.: The gerbe of Higgs bundles. Transform. Groups 7(2), 109-153 (2002) · Zbl 1083.14519 · doi:10.1007/s00031-002-0008-z
[38] Donagi, R., Pantev, T.: Lectures on the geometric Langlands conjecture and non-Abelian Hodge theory. Second International School on Geometry and Physics Geometric Langlands and Gauge Theory, p. 129 (2010) · Zbl 1245.14015
[39] Donaldson, S., Kronheimer, P.: The geometry of four-manifolds. Oxford University Press, Oxford (1990) · Zbl 0820.57002
[40] Dorey, N., Lee, S., Hollowood, T.J.: Quantization of integrable systems and a 2d/4d duality. J. High Energy Phys. 42(10), 77 (2011) · Zbl 1303.81114 · doi:10.1007/JHEP10(2011)077
[41] Drinfeld, V.: Quantum groups. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2 (Berkeley, CA, 1986), pp. 798-820. American Mathematical Society, Providence, RI (1987) · Zbl 0667.16003
[42] Drinfel’d, V.; Jimbo, M. (ed.), Hopf algebras and the quantum Yang-Baxter equation, 264-268 (1990), Singapore · doi:10.1142/9789812798336_0013
[43] Eager, R., Saberi, I., Walcher, J.: Nilpotence varieties (2018). arXiv:1807.03766 · Zbl 1472.81238
[44] Elliott, C., Safronov, P.: Topological twists of supersymmetric algebras of observables. Commun. Math. Phys. (2019). https://doi.org/10.1007/s00220-019-03393-9 · Zbl 1436.81134
[45] Elliott, C., Yoo, P.: Geometric Langlands twists of \[N=4N=4\] gauge theory from derived algebraic geometry. Adv. Theor. Math. Phys. 22(3), 615-708 (2018) · Zbl 07430939 · doi:10.4310/ATMP.2018.v22.n3.a3
[46] Elliott, C., Yoo, P.: A physical origin for singular support conditions in geometric Langlands theory. Commun. Math. Phys. 368(3), 985-1050 (2019) · Zbl 1434.14007 · doi:10.1007/s00220-019-03438-z
[47] Etingof, P., Kazhdan, D.: Quantization of Lie bialgebras, III. Sel. Math. New Ser. 4(2), 233 (1998) · Zbl 0915.17009 · doi:10.1007/s000290050031
[48] Etingof, P., Varchenko, A.: Geometry and classification of solutions of the classical dynamical Yang-Baxter equation. Commun. Math. Phys. 192(1), 77-120 (1998) · Zbl 0915.17018 · doi:10.1007/s002200050292
[49] Finkelberg, M., Kuznetsov, A., Rybnikov, L., Dobrovolska, G.: Towards a cluster structure on trigonometric Zastava. Sel. Math. (N.S.) 24(1), 187-225 (2018) · Zbl 1423.13122 · doi:10.1007/s00029-016-0287-1
[50] Foscolo, L.: On moduli spaces of periodic monopoles and gravitational instantons. Ph.D. thesis, Imperial College, London (2013)
[51] Foscolo, L.: Deformation theory of periodic monopoles (with singularities). Commun. Math. Phys. 341(1), 351-390 (2016) · Zbl 1335.53032 · doi:10.1007/s00220-015-2497-3
[52] Foscolo, L.: A gluing construction for periodic monopoles. Int. Math. Res. Not. IMRN 24, 7504-7550 (2017) · Zbl 1405.53040
[53] Frassek, R., Pestun, V.: A family of \[{\rm GL}(r)\] GL(r) multiplicative Higgs bundles on rational base. arXiv preprint arXiv:1808.00799 (2018) · Zbl 1464.16029
[54] Frenkel, E., Mukhin, E.: Combinatorics of \[q\] q-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phys. 216(1), 23-57 (2001) · Zbl 1051.17013 · doi:10.1007/s002200000323
[55] Frenkel, E., Ngô, B.C.: Geometrization of trace formulas. Bull. Math. Sci. 1(1), 129-199 (2011) · Zbl 1319.22015 · doi:10.1007/s13373-011-0009-0
[56] Frenkel, E., Reshetikhin, N.: Deformations of \[\cal{W}W\]-algebras associated to simple Lie algebras. Commun. Math. Phys. 197(1), 1-32 (1998) · Zbl 0939.17011 · doi:10.1007/BF02099206
[57] Frenkel, E.; Reshetikhin, N.; Jing, N. (ed.); Misra, KC (ed.), The \[q\] q-characters of representations of quantum affine algebras and deformations of \[\cal{W}W\]-algebras, No. 248, 163-205 (1999), Providence, RI · Zbl 0973.17015 · doi:10.1090/conm/248/03823
[58] Frenkel, E., Reshetikhin, N., Semenov-Tian-Shansky, M.: Drinfeld-Sokolov reduction for difference operators and deformations of \[\cal{W}W\]-algebras \[II\]. The case of Virasoro algebra. Commun. Math. Phys. 192(3), 605-629 (1998) · Zbl 0916.17020 · doi:10.1007/s002200050311
[59] Gaiotto, D.: Opers and TBA. arXiv preprint arXiv:1403.6137 (2014)
[60] Gaitsgory, D., Rozenblyum, N.: A study in derived algebraic geometry. I. Correspondences and Duality. Mathematical Surveys and Monographs, vol. 221. American Mathematical Society, Providence, RI (2017) · Zbl 1408.14001 · doi:10.1090/surv/221.1
[61] Gaitsgory, D., Rozenblyum, N.: A Study in Derived Algebraic Geometry. II. Deformations, Lie Theory and Formal Geometry, Mathematical Surveys and Monographs, vol. 221. American Mathematical Society, Providence, RI (2017) · Zbl 1409.14003
[62] Gelfand, I., Cherednik, I.: Abstract Hamiltonian formalism for classical Yang-Baxter bundles. Akad. Nauk SSSR Inst. Prikl. Mat. 38(208), 29 (1982). (preprint)
[63] Gerasimov, A., Kharchev, S., Lebedev, D.: Representation theory and quantum inverse scattering method: the open Toda chain and the hyperbolic Sutherland model. Int. Math. Res. Not. 2004(17), 823-854 (2004) · Zbl 1084.35098 · doi:10.1155/S1073792804132595
[64] Gerasimov, A., Kharchev, S., Lebedev, D., Oblezin, S.: On a class of representations of the Yangian and moduli space of monopoles. Commun. Math. Phys. 260(3), 511-525 (2005) · Zbl 1142.53069 · doi:10.1007/s00220-005-1417-3
[65] Ginzburg, V., Rozenblyum, N.: Gaiotto’s Lagrangian subvarieties via derived symplectic geometry. Algebras Represent. Theory 21(5), 1003-1015 (2018) · Zbl 1398.53084 · doi:10.1007/s10468-018-9801-9
[66] Hennion, B.: Formal loops and tangent Lie algebras. Ph.D. thesis, Université de Montpellier (2015)
[67] Hurtubise, J., Markman, E.: Elliptic Sklyanin integrable systems for arbitrary reductive groups. Adv. Theor. Math. Phys. 6(5), 873-978 (2002) · doi:10.4310/ATMP.2002.v6.n5.a4
[68] Hurtubise, J., Markman, E.: Surfaces and the Sklyanin bracket. Commun. Math. Phys. 230(3), 485-502 (2002) · Zbl 1041.37034 · doi:10.1007/s00220-002-0700-9
[69] Kamnitzer, J., Webster, B., Weekes, A., Yacobi, O.: Yangians and quantizations of slices in the affine Grassmannian. Algebra Number Theory 8(4), 857-893 (2014) · Zbl 1325.14068 · doi:10.2140/ant.2014.8.857
[70] Kapustin, A.: Holomorphic reduction of \[N=2N=2\] gauge theories, Wilson-’t Hooft operators, and S-duality (2006)
[71] Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1(1), 1-236 (2007) · Zbl 1128.22013 · doi:10.4310/CNTP.2007.v1.n1.a1
[72] Khovanskiĭ, A.: Newton polyhedra, and toroidal varieties. Funkcional. Anal. i Priložen. 11(4), 56-64 (1977). 96 · Zbl 0445.14019
[73] Kimura, T., Pestun, V.: Quiver W-algebras. Lett. Math. Phys. 108(6), 1351-1381 (2018) · Zbl 1388.81850 · doi:10.1007/s11005-018-1072-1
[74] Knight, H.: Spectra of tensor products of finite-dimensional representations of Yangians. J. Algebra 174(1), 187-196 (1995) · Zbl 0868.17009 · doi:10.1006/jabr.1995.1123
[75] Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157-216 (2003) · Zbl 1058.53065 · doi:10.1023/B:MATH.0000027508.00421.bf
[76] Koroteev, P., Sage, D., Zeitlin, A.: \[({\rm SL}(N), q)\](SL(N),q)-opers, the \[q\] q-Langlands correspondence, and quantum/classical duality. arXiv preprint arXiv:1811.09937 (2018) · Zbl 1462.82013
[77] Laszlo, Y.: About \[G\] G-bundles over elliptic curves. Ann. Inst. Fourier (Grenoble) 48(2), 413-424 (1998) · Zbl 0901.14019 · doi:10.5802/aif.1623
[78] Melani, V., Safronov, P.: Derived coisotropic structures. arXiv preprint arXiv:1608.01482 (2016) · Zbl 1440.14004
[79] Melani, V., Safronov, P.: Derived coisotropic structures II: stacks and quantization. arXiv preprint arXiv:1704.03201 (2017) · Zbl 1440.14004
[80] Mochizuki, T.: Kobayashi-Hitchin correspondence for analytically stable bundles. arXiv preprint arXiv:1712.08978 (2017) · Zbl 1433.53038
[81] Mochizuki, T.: Periodic monopoles and difference modules. arXiv preprint arXiv:1712.08981 (2017) · Zbl 1508.53006
[82] Mukai, S.: Symplectic structure of the moduli space of sheaves on an abelian or \[K3\] K3 surface. Invent. Math. 77(1), 101-116 (1984) · Zbl 0565.14002 · doi:10.1007/BF01389137
[83] Mukai, S.: Moduli of vector bundles on \[K3\] K3 surfaces and symplectic manifolds. Sugaku Expo. 1(2), 139-174 (1988) · Zbl 0685.14021
[84] Mukhin, E., Varchenko, A.: Discrete Miura opers and solutions of the Bethe Ansatz equations. Commun. Math. Phys. 256(3), 565-588 (2005) · Zbl 1127.82020 · doi:10.1007/s00220-005-1288-7
[85] Nekrasov, N.: Four dimensional holomorphic theories. Ph.D. thesis, Princeton University (1996). http://media.scgp.stonybrook.edu/papers/prdiss96.pdf
[86] Nekrasov, N.: BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and \[qq\] qq-characters. J. High Energy Phys. 2016(3), 181 (2016) · Zbl 1388.81872 · doi:10.1007/JHEP03(2016)181
[87] Nekrasov, N.: Open-closed (little) string duality and Chern-Simons-Bethe/gauge correspondence. Lecture, String-Math, Hamburg (28 July 2017). https://stringmath2017.desy.de/sites/sites_conferences/site_stringmath2017/content/e45470/e56510/e56566/SM-Nekrasov.pdf (2017)
[88] Nekrasov, N., Pestun, V.: Seiberg-Witten geometry of four dimensional \[\cal{N}= 2N=2\] quiver gauge theories. arXiv preprint arXiv:1211.2240 (2012)
[89] Nekrasov, N., Pestun, V., Shatashvili, S.: Quantum geometry and quiver gauge theories. Commun. Math. Phys. 357(2), 519-567 (2018) · Zbl 1393.81033 · doi:10.1007/s00220-017-3071-y
[90] Nekrasov, N.A., Shatashvili, S.L.: Quantization of integrable systems and four dimensional gauge theories. In: Proceedings, 16th International Congress on Mathematical Physics (ICMP09): Prague, Czech Republic, August 3-8, 2009, pp. 265-289 (2009) · Zbl 1214.83049
[91] Nekrasov, N.A., Shatashvili, S.L.: Quantum integrability and supersymmetric vacua. Prog. Theor. Phys. Suppl. 177, 105-119 (2009) · Zbl 1173.81325 · doi:10.1143/PTPS.177.105
[92] Pantev, T., Toën, B., Vaquié, M., Vezzosi, G.: Shifted symplectic structures. Publ. Math. l’IHÉS 117(1), 271-328 (2013) · Zbl 1328.14027 · doi:10.1007/s10240-013-0054-1
[93] Pauly, M.: Monopole moduli spaces for compact 3-manifolds. Math. Ann. 311(1), 125-146 (1998) · Zbl 0920.58011 · doi:10.1007/s002080050180
[94] Pestun, V.: Periodic Monopoles and qOpers. Lecture, String-Math, Hamburg (28 July 2017). https://stringmath2017.desy.de/sites/sites_conferences/site_stringmath2017/content/e45470/e56510/e56567/SM-Pestun.pdf (2017)
[95] Polishchuk, A., Rothstein, M.: Fourier transform for \[D\] D-algebras, I. Duke Math. J. 109(1), 123-146 (2001) · Zbl 1069.14003 · doi:10.1215/S0012-7094-01-10915-0
[96] Popov, V.: Cross-sections, quotients, and representation rings of semisimple algebraic groups. Transform. Groups 16(3), 827-856 (2011) · Zbl 1238.20063 · doi:10.1007/s00031-011-9137-6
[97] Qiu, J., Zabzine, M.: On twisted \[\cal{N}= 2N=2 5\] D super Yang-Mills theory. Lett. Math. Phys. 106(1), 1-27 (2016) · Zbl 1329.81276 · doi:10.1007/s11005-015-0804-8
[98] Sauloy, J.: Isomonodromy for complex linear \[q\] q-difference equations. In: Théories asymptotiques et équations de Painlevé, Sémin. Congr., vol. 14, pp. 249-280. Société mathématique de France, Paris (2006) · Zbl 1137.39016
[99] Semenov-Tian-Shansky, M., Sevostyanov, A.: Drinfeld-Sokolov reduction for difference operators and deformations of \[\cal{W}W\]-algebras II. The general semisimple case. Commun. Math. Phys. 192(3), 631-647 (1998) · Zbl 0916.17021 · doi:10.1007/s002200050312
[100] Sevostyanov, A.: Drinfeld-Sokolov reduction for quantum groups and deformations of \[WW\]-algebras. Sel. Math. (N.S.) 8(4), 637-703 (2002) · Zbl 1015.17009
[101] Sevostyanov, A.: Conjugacy classes in Weyl groups and q-W algebras. Adv. Math. 228(3), 1315-1376 (2011) · Zbl 1229.17017 · doi:10.1016/j.aim.2011.06.018
[102] Shapiro, A.: Poisson geometry of monic matrix polynomials. Int. Math. Res. Not. 17, 5427-5453 (2016) · Zbl 1404.53107 · doi:10.1093/imrn/rnv313
[103] Simpson, C.: Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization. J. Am. Math. Soc. 1(4), 867-918 (1988) · Zbl 0669.58008 · doi:10.1090/S0894-0347-1988-0944577-9
[104] Sklyanin, E.: Quantum variant of the method of the inverse scattering problem. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov 95, 55-128, 161 (1980). Differential geometry, Lie groups and mechanics, III · Zbl 0464.35071
[105] Smith, B.H.: Singular \[G\] G-monopoles on \[S^1\times \Sigma\] S1×Σ. Can. J. Math. 68(5), 1096-1119 (2016) · Zbl 1351.53046 · doi:10.4153/CJM-2016-010-2
[106] Spaide, T.: Shifted symplectic and Poisson structures on spaces of framed maps. arXiv preprint arXiv:1607.03807 (2016)
[107] Steinberg, R.: Regular elements of semisimple algebraic groups. Inst. Hautes Études Sci. Publ. Math. 25, 49-80 (1965) · Zbl 0136.30002 · doi:10.1007/BF02684397
[108] Toën, B.: Higher and derived stacks: a global overview. Proc. Symp. Pure Math. 80, 435-487 (2005) · Zbl 1183.14001
[109] Toën, B.: Derived algebraic geometry. EMS Surv. Math. Sci. 1(2), 153-240 (2014) · Zbl 1314.14005 · doi:10.4171/EMSS/4
[110] Williams, H.: Double Bruhat cells in Kac-Moody groups and integrable systems. Lett. Math. Phys. 103(4), 389-419 (2013) · Zbl 1293.17037 · doi:10.1007/s11005-012-0604-3
[111] Witten, E.: Topological quantum field theory. Commun. Math. Phys. 117(3), 353-386 (1988) · Zbl 0656.53078 · doi:10.1007/BF01223371
[112] Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121(3), 351-399 (1989) · Zbl 0667.57005 · doi:10.1007/BF01217730
[113] Witten, E.; Bott, R. (ed.), Geometric Langlands from six dimensions, No. 50, 281-310 (2010), Providence, RI · Zbl 1216.81129 · doi:10.1090/crmp/050/23
[114] Zhu, X.; Bezrukavnikov, R. (ed.); Braverman, A. (ed.); Yun, Z. (ed.), An introduction to affine Grassmannians and the geometric Satake equivalence, No. 24, 59-154 (2017), Providence, RI · Zbl 1453.14122 · doi:10.1090/pcms/024/02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.