×

Product formulas for hypergeometric functions over finite fields. (English) Zbl 1523.11224

In the mathematics research literature there exist a large number of product formulas for the generalized hypergeometric functions defined over the field of complex numbers. We refer the interested reader to the works of W. N. Bailey [(*) Proc. Lond. Math. Soc. (2) 28, 242–254 (1928; JFM 54.0392.04); Proc. Lond. Math. Soc. (2) 38, 377–384 (1934; Zbl 0010.26301); Generalized hypergeometric series. Cambridge: Cambridge University Press (1935; Zbl 0011.02303)]. In particular, Bailey gave a list of twelve such product formulas for hypergeometric functions in his work [(*), loc. cit.]. The finite field analogues of four of these formulas were given by J. Greene [Trans. Am. Math. Soc. 301, 77–101 (1987; Zbl 0629.12017)] and the first author [“Hypergeometric functions over finite fields”, Preprint, arXiv:2108.06754]. The present paper is devoted to the development of the finite filed analogues of the remaining eight formulas of Bailey’s list by comparing their Fourier transforms in terms of hypergeometric functions over finite fields following the the scheme of the work of the first author [loc. cit.]. We mention the following two representative results proved by the authors:
Theorem 3.1 If \(p \ne 2\) and \(\left( {{\alpha ^2},{\beta ^2}} \right) = \left( {{\alpha ^2}{\beta ^2},\varepsilon } \right) = 0\), then \[ {}_0{F_1}\left( {\begin{array}{cc} \begin{array}{l} \\ {\alpha ^2} \end{array}&{;\lambda } \end{array}} \right) {}_0{F_1}\left( {\begin{array}{cc} \begin{array}{l} \\ {\beta ^2} \end{array}&{;\lambda } \end{array}} \right) = {}_2{F_3}\left( {\begin{array}{cc} \begin{array}{l} \alpha \beta ,\alpha \beta \phi \\ {\alpha ^2},{\beta ^2},{\alpha ^2}{\beta ^2} \end{array}&{;4\lambda } \end{array}} \right), \] \[ {}_0{F_1}\left( {\begin{array}{cc} \begin{array}{l} \\ {\alpha ^2}\phi \end{array}&{;\lambda } \end{array}} \right){}_0{F_1}\left( {\begin{array}{cc} \begin{array}{l} \\ {\beta ^2}\phi \end{array}&{;\lambda } \end{array}} \right) = {}_2{F_3}\left( {\begin{array}{cc} \begin{array}{l} \alpha \beta ,\alpha \beta \phi \\ {\alpha ^2}\phi ,{\beta ^2}\phi ,{\alpha ^2}{\beta ^2} \end{array}&{;4\lambda } \end{array}} \right), \] which is the finite field analogue of the product formula \[ {}_0{F_1}\left( {\begin{array}{cc} \begin{array}{l} \\ 2a \end{array}&{;x} \end{array}} \right){}_0{F_1}\left( {\begin{array}{cc} \begin{array}{l} \\ 2b \end{array}&{;x} \end{array}} \right) = {}_2{F_3}\left( {\begin{array}{cc} \begin{array}{l} a + b,a + b - \frac{1}{2}\\ 2a,2b,2a + 2b - 1 \end{array}&{;4x} \end{array}} \right). \] Theorem 3.2 If \(p \ne 2\), then for any \(\alpha \in \widehat {{\kappa ^*}}\), \[ {}_0{F_1}\left( {\begin{array}{cc} \begin{array}{l} \\ {\alpha ^2} \end{array}&{;\lambda } \end{array}} \right){}_0{F_1}\left( {\begin{array}{cc} \begin{array}{l} \\ {\beta ^2} \end{array}&{; - \lambda } \end{array}} \right) = {}_0{F_3}\left( {\begin{array}{cc} \begin{array}{l} \\ {\alpha ^2},\alpha ,\alpha \phi \end{array}&{; - \frac{{{\lambda ^2}}}{4}} \end{array}} \right), \] which gives the finite field analogue of the product formula \[ {}_0{F_1}\left( {\begin{array}{cc} \begin{array}{l} \\ 2a \end{array}&{;x} \end{array}} \right){}_0{F_1}\left( {\begin{array}{cc} \begin{array}{l} \\ 2a \end{array}&{; - x} \end{array}} \right) = {}_0{F_3}\left( {\begin{array}{cc} \begin{array}{l} \\ 2a,a,a + \frac{1}{2} \end{array}&{; - \frac{{{x^2}}}{4}} \end{array}} \right). \] The following product formula was proven by W. N. Bailey [Proc. Lond. Math. Soc. (2) 38, 377–384 (1934; Zbl 0010.26301)] \[ \begin{split} {}_2{F_1}\left( {\begin{array}{cc} \begin{array}{l} 2a,2b\\ c \end{array}&{;x} \end{array}} \right){}_2{F_1}\left( {\begin{array}{cc} \begin{array}{l} 2a,2b\\ 2a + 2b - c + 1 \end{array}&{;x} \end{array}} \right)\\ = {}_4{F_3}\left( {\begin{array}{cc} \begin{array}{l} 2a,2b,a + b,a + b + \frac{1}{2}\\ 2a + 2b,c,2a + 2b - c + 1 \end{array}&{;4x\left( {1 - x} \right)} \end{array}} \right). \end{split} \] M. Tripathi and R. Barman [Res. Number Theory 6, No. 3, Paper No. 26, 29 p. (2020; Zbl 1467.33004)] gave a finite analogue of the above formula. The authors of the paper under review also give a new proof of this formula as:
Corollary 4.2 Suppose that \(p \ne 2\), \({\alpha ^2}{\beta ^2} = \gamma \gamma '\) and \(\left( {{\alpha ^2} + {\beta ^2},\varepsilon + \gamma } \right) = \left( {{\alpha ^2}{\beta ^2},\varepsilon + {\gamma ^2}} \right) = 0\). Then, \[ \begin{split} {}_2{F_1}\left( {\begin{array}{cc} \begin{array}{l} {\alpha ^2},{\beta ^2}\\ \gamma \end{array}&{;\lambda } \end{array}} \right){}_2{F_1}\left( {\begin{array}{cc} \begin{array}{l} {\alpha ^2},{\beta ^2}\\ \gamma ' \end{array}&{;\lambda } \end{array}} \right) - \delta \left( {1 - 2\lambda } \right)\frac{{{g^\circ }\left( \gamma \right){g^\circ }\left( {\gamma '} \right)}}{{g\left( {{\alpha ^2}} \right)g\left( {{\beta ^2}} \right)}}\alpha \beta \left( 4 \right)\\ = {}_4{F_3}\left( {\begin{array}{cc} \begin{array}{l} {\alpha ^2},{\beta ^2},\alpha \beta ,\alpha \beta \phi \\ {\alpha ^2}{\beta ^2},\gamma ,\gamma ' \end{array}&{;4\lambda \left( {1 - \lambda } \right)} \end{array}} \right) + \delta \left( {1 - \lambda } \right). \end{split} \]

MSC:

11T24 Other character sums and Gauss sums
11L05 Gauss and Kloosterman sums; generalizations
33C05 Classical hypergeometric functions, \({}_2F_1\)
33C20 Generalized hypergeometric series, \({}_pF_q\)

References:

[1] Bailey, WN, Products of generalized hypergeometric functions, Proc. London Math. Soc. Ser., 2, 28, 242-254 (1928) · JFM 54.0392.04 · doi:10.1112/plms/s2-28.1.242
[2] Bailey, WN, Some theorems concerning products of hypergeometric series, Proc. London Math. Soc. Ser., 2, 38, 377-384 (1935) · JFM 60.0304.06 · doi:10.1112/plms/s2-38.1.377
[3] Bailey, WN, Generalized Hypergeometric Series (1935), Cambridge: Cambridge Univ Press, Cambridge · JFM 61.0406.01
[4] Evans, R.; Greene, J., Clausen’s theorem and hypergeometric functions over finite fields, Finite Fields Appl., 15, 97-109 (2009) · Zbl 1161.33005 · doi:10.1016/j.ffa.2008.09.001
[5] Fuselier, J., Long, L., Ramakrishna, R., Swisher, H., Tu, F.-T.: Hypergeometric functions over finite fields, Mem. Amer. Math. Soc. (to appear) · Zbl 1443.11254
[6] Greene, J., Hypergeometric functions over finite fields, Trans. Amer. Math. Soc., 301, 77-101 (1987) · Zbl 0629.12017 · doi:10.1090/S0002-9947-1987-0879564-8
[7] Katz, N.M.: Exponential Sums and Differential Equations, Annals of Math. Studies 124, Princeton, 1990 · Zbl 0731.14008
[8] Koblitz, N., The number of points on certain families of hypersurfaces over finite fields, Compositio Math., 48, 3-23 (1983) · Zbl 0509.14023
[9] McCarthy, D., Transformations of well-poised hypergeometric functions over finite fields, Finite Fields Appl., 18, 1133-1147 (2012) · Zbl 1276.11198 · doi:10.1016/j.ffa.2012.08.007
[10] Otsubo, N.: Hypergeometric functions over finite fields, arXiv:2108.06754 · Zbl 1261.19004
[11] Senoue, T.: Product formulas for hypergeometric functions over finite fields (in Japanese), Master’s Thesis, Chiba University, March 2022 · Zbl 1523.11224
[12] Tripathi, M.; Barman, R., A finite field analogue of the Appell series \(F_4\), Res. Number Theory, 4, 35 (2018) · Zbl 1428.33028 · doi:10.1007/s40993-018-0128-8
[13] Tripathi, M.; Barman, R., Certain product formulas and values of Gaussian hypergeometric series, Res. Number Theory, 6, 26 (2020) · Zbl 1467.33004 · doi:10.1007/s40993-020-00203-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.