×

Methods for the analysis of asymmetric pairwise relationships. (English) Zbl 1414.91297

Summary: Asymmetric pairwise relationships are frequently observed in experimental and non-experimental studies. They can be analysed with different aims and approaches. A brief review of models and methods of multidimensional scaling and cluster analysis able to deal with asymmetric proximities is provided taking a “data-analytic” approach and emphasizing data visualization.

MSC:

91C15 One- and multidimensional scaling in the social and behavioral sciences
91C20 Clustering in the social and behavioral sciences
62H25 Factor analysis and principal components; correspondence analysis
62H30 Classification and discrimination; cluster analysis (statistical aspects)
Full Text: DOI

References:

[1] Arabie P, Carroll JD (1980) MAPCLUS: A mathematical programming approach to fitting the ADCLUS model. Psychometrika 40:211-235 · Zbl 0437.62059 · doi:10.1007/BF02294077
[2] Arabie P, Carroll JD, DeSarbo WS (1987) Three-way scaling and clustering. Sage Publications, Newbury Park · doi:10.4135/9781412986359
[3] Baier D, Frost S (2017) Relating brand confusion to ad similarities and brand strengths through image data analysis and classification. Adv Data Anal Classif. https://doi.org/10.1007/s11634-017-0282-1 · Zbl 1414.62495 · doi:10.1007/s11634-017-0282-1
[4] Bloxom B (1968) Individual differences in multidimensional scaling (Research Bulletin 68-45). Educational Testing Service, Princeton, p 68
[5] Borg I, Groenen PJF (2005) Modern multidimensional scaling. Theory and applications, 2nd edn. Springer, New York · Zbl 1085.62079
[6] Bove G (1992) Asymmetric multidimensional scaling and correspondence analysis for square tables. Stat Appl Ital J Appl Stat 4:587-598
[7] Bove, G.; Zani, S. (ed.); Cerioli, A. (ed.); etal., Approaches to asymmetric multidimensional scaling with external information, 69-76 (2006), Berlin · doi:10.1007/3-540-35978-8_8
[8] Bove G (2012) Exploratory approaches to seriation by asymmetric multidimensional scaling. Behaviormetrika 39:63-73 · doi:10.2333/bhmk.39.63
[9] Bove, G.; Critchley, F.; Steyer, R. (ed.); etal., Metric multidimensional scaling for asymmetric proximities when the asymmetry is one-dimensional, 55-60 (1993), Stuttgart and New York
[10] Bove, G.; Rocci, R.; Vichi, M. (ed.); Opitz, O. (ed.), Methods for asymmetric three-way scaling, 131-138 (1999), Berlin · doi:10.1007/978-3-642-60126-2_17
[11] Bove G, Rocci R (2004) A method of asymmetric multidimensional scaling with external information. Atti della XLII Riunione Scientifica della S.I.S, Bari
[12] Bove G, Critchley F (1989) On the representation of asymmetric proximities. In: Atti delle Giornate di studio del Gruppo Italiano aderenti IFCS
[13] Brossier G (1982) Classification hiérarchique à partir de matrices carrées non symétriques. Stat Anal des Données 7:22-40 · Zbl 0529.62049
[14] Busing FMTA, Groenen PJF, Heiser WJ (2005) Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation. Psychometrika 70:71-98 · Zbl 1306.62390 · doi:10.1007/s11336-001-0908-1
[15] Carroll JD, Arabie P (1980) Multidimensional scaling. Annu Rev Psychol 31:607-649 · doi:10.1146/annurev.ps.31.020180.003135
[16] Carroll, JD; Arabie, P.; Birnbaum, MH (ed.), Multidimensional scaling, 179-250 (1998), San Diego · doi:10.1016/B978-012099975-0.50005-1
[17] Carroll JD, Chang JJ (1970) Analysis of individual differences in multidimensional scaling via an N-way generalization of Eckart-Young decomposition. Psychometrika 35:283-319 · Zbl 0202.19101 · doi:10.1007/BF02310791
[18] Carroll JD, Chang JJ (1972) IDIOSCAL (Individual differences in Orientation SCALing): a generalization of INDSCAL allowing IDIOsyncratic reference systems as well as an analytic approximation to INDSCAL. Paper presented at meeting of the psychometric society, Princeton
[19] Caussinus H (1966) Contribution à l’analyse statistique des tableaux de corrélation. Annales de la Faculté des Sciences de Toulouse 29:77-183 · Zbl 0168.39904 · doi:10.5802/afst.519
[20] Caussinus H, de Falguerolles A (1987) Tableaux carrés: modélisation et methods factorielles. Revue de Stat Appl 35:35-52
[21] Chino N (1978) A graphical technique for representing the asymmetric relationships between \[NN\] objects. Behaviormetrika 5:23-40 · doi:10.2333/bhmk.5.23
[22] Chino N (1990) A generalized inner product model for the analysis of asymmetry. Behaviormetrika 17:25-46 · doi:10.2333/bhmk.17.27_25
[23] Chino N (2012) A brief survey of asymmetric MDS and some open problems. Behaviormetrika 39(1):127-165 · doi:10.2333/bhmk.39.127
[24] Chino N, Shiraiwa K (1993) Geometrical structures of some non-distance models for asymmetric MDS. Behaviormetrika 20:35-47 · doi:10.2333/bhmk.20.35
[25] Constantine AG, Gower JC (1978) Graphical representation of asymmetric matrices. Appl Stat 3:297-304 · Zbl 0436.62049 · doi:10.2307/2347165
[26] Coombs CH (1964) A theory of data. Wiley, New York
[27] Cox TF, Cox MAA (2001) Multidimensional scaling. CRC/Chapman and Hall, London · Zbl 1004.91067
[28] Critchley F (1988) On characterization of the inner products of the space of square matrices of given order which render orthogonal the symmetric and the skew-symmetric subspaces. Warwick statistics research report 171, University of Warwick, Coventry
[29] Leeuw, J.; Heiser, WJ; Krishnaiah, PR (ed.); Kanal, LN (ed.), Theory of multidimensional scaling, No. 2, 285-316 (1982), Amsterdam · Zbl 0511.62076
[30] De Rooij M (2001) Distance models for the analysis of transition frequencies. Unpublished Doctoral dissertation, Leiden University · Zbl 1075.62656
[31] De Rooij M (2009) Trend vector models for the analysis of change in continuous time for multiple groups. Comput Stat Data Anal 53:3209-3216 · Zbl 1453.62080 · doi:10.1016/j.csda.2008.09.030
[32] De Rooij M (2015) Transitional modelling of experimental longitudinal data with missing values. Adv Data Anal Classif. https://doi.org/10.1007/s11634-015-0226-6 · Zbl 1414.62013 · doi:10.1007/s11634-015-0226-6
[33] De Rooij M, Heiser WJ (2000) Triadic distance models for the analysis of asymmetric three-way proximity data. Br J Math Stat Psychol 53:99-119 · doi:10.1348/000711000159204
[34] Rooij, M.; Heiser, WJ; Yanai, H. (ed.); Okada, A. (ed.); etal., A distance representation of the quasi-symmetry model and related distance models, 487-494 (2003), Tokyo · doi:10.1007/978-4-431-66996-8_55
[35] De Rooij M, Heiser WJ (2005) Graphical representations and odds ratios in a distance association for the analysis of cross-classified data. Psychometrika 70:99-122 · Zbl 1306.62526 · doi:10.1007/s11336-000-0848-1
[36] DeSarbo WS (1982) GENNCLUS: new models for general nonmetric clustering analysis. Psychometrika 47:449-475 · Zbl 0566.62057 · doi:10.1007/BF02293709
[37] DeSarbo WS, John MD, Manrai AK, Manrai LA, Edwards EA (1992) TSCALE: a new multidimensional procedure based on Tvresky’s contrast model. Psychometrika 57:43-69 · Zbl 0761.92051 · doi:10.1007/BF02294658
[38] Dossou-Gbété S, Grorud A (2002) Biplots for matched two-way tables. Annales de la Faculté des Sciences de Toulouse 11:469-483 · Zbl 1042.62056 · doi:10.5802/afst.1034
[39] Escofier B (1983) Analyse de la différence entre deux mesures sur le produit de deux même ensembles. Cah l’Anal des Données 3:325-329 · Zbl 0549.62006
[40] Escoufier, Y.; Grorud, A.; Diday, E. (ed.); etal., Analyse factorielle des matrices carrees non symetriques, 263-276 (1980), Amsterdam · Zbl 0474.62055
[41] France SL, Carroll JD (2011) Two-way multidimensional scaling: a review. IEEE Trans Syst Man Cybern C Appl Rev 41(5):644-661 · doi:10.1109/TSMCC.2010.2078502
[42] Freeman LC (1997) Uncovering organizational hierarchies. Comput Math Org Theory 3:5-18 · Zbl 0878.90071 · doi:10.1023/A:1009690520577
[43] Fujiwara H (1980) Hitaisho sokudo to toshitsusei keisuu o mochiita kurasuta bunsekiho [Methods for cluster analysis using asymmwric measures and homogeneity coefficient]. Kodo Keiryogaku [Jpn J Behav] 7(2):12-21 (in Japanese) · doi:10.2333/jbhmk.7.2_12
[44] Gabriel KR (1971) The biplot graphic display of matrices with application to principal component analysis. Biometrika 58(3):453-467 · Zbl 0228.62034 · doi:10.1093/biomet/58.3.453
[45] Goodman LA (1979) Simple models for the analysis of association in cross classifications having ordered categories. J Am Stat Assoc 74:537-552 · doi:10.1080/01621459.1979.10481650
[46] Gower, JC; Barra, JR (ed.); etal., The analysis of asymmetry and orthogonality, 109-123 (1977), Amsterdam · Zbl 0366.62058
[47] Gower, JC; Shigemasu, K. (ed.); Okada, A. (ed.); etal., Asymmetry analysis: the place of models, 79-86 (2008), Tokyo
[48] Gower JC (2014) Skew symmetry in retrospect. Adv Data Anal Classif. https://doi.org/10.1007/s11634-014-0181-7 · Zbl 1414.62020 · doi:10.1007/s11634-014-0181-7
[49] Gower JC, Hand DJ (1996) Biplots. Chapman and Hall, London · Zbl 0867.62053
[50] Gower JC, Groenen PJF, van de Velden M (2010) Area biplots. J Comput Graph Stat 19(1):46-61. https://doi.org/10.1198/jcgs.2010.07134 · doi:10.1198/jcgs.2010.07134
[51] Gower JC, Lubbe S, Le Roux N (2011) Understanding biplots. Wiley, Chichester · doi:10.1002/9780470973196
[52] Greenacre M (2000) Correspondence analysis of square asymmetric matrices. Appl Stat 49:297-310 · Zbl 0959.62056
[53] Greenacre MJ (2010) Biplots in practice. BBVA Foundation, Madrid
[54] Greenacre MJ, Groenen PJF (2016) Weighted euclidean biplots. J Classif 33:442-459 · Zbl 1364.62151 · doi:10.1007/s00357-016-9213-7
[55] Groenen, PJF; Borg, I.; Blasius, J. (ed.); Greenacre, M. (ed.), Past, present and future of multidimensional scaling, 95-116 (2014), London
[56] Harshmann RA (1978) Models for analysis of asymmetrical relationships among N objects or stimuli. Paper presented at the first joint meeting of the psychometric society and the society for mathematical psychology, McMaster University, Hamilton, Ontario
[57] Harshmann RA (1981) DEDICOM analysis of skew-symmetric data. Part I: theory. Unpublished technical memorandum, Bell Laboraries, Murray Hill
[58] Harshmann RA, Green PE, Wind Y, Lundy ME (1982) A model for the analysis of asymmetric data in marketing research. Mark Sci 1:204-242 · doi:10.1287/mksc.1.2.205
[59] Heiser, WJ; Soete, G. (ed.); Feger, H. (ed.); Klauer, KC (ed.), Order invariant unfolding analysis under smoothness restrictions, 3-31 (1989), Amsterdam · doi:10.1016/S0166-4115(08)60228-9
[60] Heiser, WJ; Busing, FMTA; Kaplan, D. (ed.), Multidimensional scaling and unfolding of symmetric and asymmetric proximity relations, 25-48 (2004), London
[61] Heiser WJ, de Leeuw J (1981) Multidimensional mapping of preference data. Math Sci Hum 19(73):39-96
[62] Holman EW (1979) Monotonic models for asymmetric proximities. J Math Psychol 20:1-15 · Zbl 0434.92024 · doi:10.1016/0022-2496(79)90031-2
[63] Horan CB (1969) Multidimensional scaling: combining observations when individuals have different perceptual structures. Psychometrika 34:319-165 · doi:10.1007/BF02289341
[64] Hubert L (1973) Min and max hierarchical clustering using asymmetric similarity measures. Psychometrika 38:63-72 · Zbl 0251.92014 · doi:10.1007/BF02291174
[65] Johannesson M (1997) Modelling asymmetric similarity with prominence. Lund University Cognitive Studies—LUCS 55 (ISSN: 1101-8453 D)
[66] Johannesson M (2000) Modelling asymmetric similarity with prominence. Br J Math Stat Psychol 53:121-139 · doi:10.1348/000711000159213
[67] Johnson SC (1967) Hierarchical clustering schemes. Psychometrika 32:241-254 · Zbl 1367.62191 · doi:10.1007/BF02289588
[68] Kiers HAL (1993) An alternating least squares algorithm for PARAFAC2 and DEDICOM3. Comput Stat Data Anal 16:103-118 · Zbl 0875.62260 · doi:10.1016/0167-9473(93)90247-Q
[69] Kiers HAL, Takane Y (1993) Constrained DEDICOM. Psychometrika 58:339-355 · Zbl 0776.62009 · doi:10.1007/BF02294580
[70] Kiers HAL, Takane Y (1994) A generalization of GIPSCAL for the analysis of asymmetric data. J Classif 11:79-99 · Zbl 0811.92027 · doi:10.1007/BF01201024
[71] Krumhansl CL (1978) Concerning the applicability of geometric models to similarity data: the interrelationship between similarity and spatial density. Psychol Rev 85:445-463 · doi:10.1037/0033-295X.85.5.445
[72] Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1-29 · Zbl 0123.36803 · doi:10.1007/BF02289565
[73] Kruskal JB, Carmone FJ Jr (1971) How to use M-D-SCAL (Version 5M) and other useful information. Multidimensional Scaling Program Package of Bell Laboratories, Bell Laboratories, Murray Hill
[74] Kruskal, JB; Carroll, JD; Krishnaiah, PR (ed.), Geometrical models and badness-of-fit functions, No. 2, 639-671 (1969), New York
[75] Lance GN, Williams WT (1966) A generalized sorting strategy for computer classifications. Nature 212:218 · doi:10.1038/212218a0
[76] Lance GN, Williams WT (1967) A general theory of classificatory sorting strategies: 1 hierarchical systems. Comput J 9:373-380 · doi:10.1093/comjnl/9.4.373
[77] Mair P, De Leeuw J, Borg I, Groenen PJF (2017) Package SMACOF, cran.r-project.org
[78] Muñoz A, Gonzalez J (2012) Hierarchical latent semantic class extraction using asymmetric term similarities. Behaviormetrika 39(1):91-109 · doi:10.2333/bhmk.39.91
[79] Nosofsky RM (1991) Stimulus bias, asymmetric similarity, and classification. Cogn Psychol 23:94-140 · doi:10.1016/0010-0285(91)90004-8
[80] Okada, A.; Jansen, MGH (ed.); Schuur, WH (ed.), An analysis of intergenerational occupational mobility by asymmetric multidimensional scaling, No. 1, 1-15 (1988), Groningen
[81] Okada A, Imaizumi T (1987) Non-metric multidimensional scaling of asymmetric similarities. Behaviormetrika 21:81-96 · doi:10.2333/bhmk.14.21_81
[82] Okada A, Imaizumi T (1997) Asymmetric multidimensional scaling of two-mode three-way proximities. J Classif 14:195-224 · Zbl 0905.92035 · doi:10.1007/s003579900010
[83] Okada, A.; Imaizumi, T.; Decker, R. (ed.); Gaul, W. (ed.), Two-mode three-way asymmetric multidimensional scaling with constraints on asymmetry, 52-59 (2000), Berlin · doi:10.1007/978-3-642-57280-7_5
[84] Okada, A.; Imaizumi, T.; Nishisato, S. (ed.); Baba, Y. (ed.); Bozdogan, H. (ed.); Kanefuji, K. (ed.), Multidimensional scaling with different orientations of dimensions for symmetric and asymmetric relationships, 97-106 (2002), Tokyo · Zbl 1090.62065 · doi:10.1007/978-4-431-65955-6_10
[85] Okada, A.; Imaizumi, T.; Gaul, W. (ed.); Ritter, G. (ed.), A generalization of two-mode three-way asymmetric multidimensional scaling, 113-122 (2002), Berlin
[86] Okada, A.; Imaizumi, T.; Yanai, H. (ed.); Okada, A. (ed.); Shigemasu, K. (ed.); Kano, Y. (ed.); Meulman, JJ (ed.), Two-mode three-way nonmetric multidimensional scaling with different directions of asymmetry for different sources, 495-502 (2003), Tokyo · doi:10.1007/978-4-431-66996-8_56
[87] Okada, A.; Imaizumi, T.; Baier, D. (ed.); Wernecke, K-D (ed.), Joint space model for multidimensional scaling of two-mode three-way asymmetric proximities, 371-378 (2005), Berlin · Zbl 05243424 · doi:10.1007/3-540-26981-9_43
[88] Okada, A.; Imaizumi, T.; Weihs, C. (ed.); Gaul, W. (ed.), External analysis of two-mode three-way asymmetric multidimensional scaling, 288-295 (2005), Berlin · doi:10.1007/3-540-28084-7_32
[89] Okada, A.; Imaizumi, T.; Baier, D. (ed.); Decker, R. (ed.); Lenz, H-J (ed.), Multidimensional scaling of asymmetric proximities with a dominance point, 307-318 (2007), Berlin · doi:10.1007/978-3-540-70981-7_35
[90] Okada A, Iwamoto T (1995) Hitaisho kurasuta bunnsekihou niyoru daigakushinngaku niokeru todoufukennkann no kanren no bunseki [An asymmetric cluster analysis study on university enrolment flow among Japanese prefectures]. Riron to Houhou [Sociol Theory Methods] 10:1-13 (in Japanese)
[91] Okada A, Iwamoto T (1996) University enrollment flow among the Japanese prefectures: a comparison before and after the joint first stage achievement test by asymmetric cluster analysis. Behaviormetrika 23:169-185 · doi:10.2333/bhmk.23.169
[92] Okada A, Tsurumi H (2012) Asymmetric multidimensional scaling of brand switching among margarine brands. Behaviormetrika 39:111-126 · doi:10.2333/bhmk.39.111
[93] Okada, A.; Tsurumi, H.; Giudici, P. (ed.); Ingrassia, S. (ed.); Vichi, M. (ed.), External analysis of asymmetric multidimensional scaling based on singular value decomposition, 269-278 (2013), Heidelberg · doi:10.1007/978-3-319-00032-9_31
[94] Okada, A.; Tsurumi, H.; Vicari, D. (ed.); Okada, A. (ed.); Ragozini, G. (ed.); Weihs, C. (ed.), Evaluating the effect of new brand by asymmetric multidimensional scaling, 201-209 (2014), Heidelberg
[95] Okada, A.; Yokoyama, S.; Morlini, M. (ed.); Tommaso, M. (ed.); Vichi, A. (ed.), Asymmetric CLUster analysis based on SKEW-Symmetry: ACLUSKEW, 191-199 (2015), Heidelberg · doi:10.1007/978-3-319-17377-1_20
[96] Olszewski D (2011) Asymmetric k-means algorithm. In: Dovnikar A, Lotrič U, Ster B (eds), International conference on adaptive and natural computing algorithms (ICANNGA 2011) part II. Lecture notes in computer science, vol 6594. Springer, Heidelberg, pp 1-10
[97] Olszewski D (2012) K-means clustering of asymmetric data. In: Corchado E et al (eds) Hybrid artificial intelligent systems 2012, part I, Lecture notes in computer science, vol. 7208. Springer, Berlin, pp 243-254
[98] Olszewski D, Šter B (2014) Asymmetric clustering using the alpha-beta divergence. Pattern Recogn 47:2031-2041 · doi:10.1016/j.patcog.2013.11.019
[99] Rocci R (2004) A general algorithm to fit constrained DEDICOM models. SMA J Ital Stat Soc 13:139-150 · Zbl 1204.62108
[100] Rocci R, Bove G (2002) Rotation techniques in asymmetric multidimensional scaling. J Comput Graph Stat 11:405-419 · doi:10.1198/106186002760180581
[101] Saburi S, Chino N (2008) A maximum likelihood for asymmetric MDS model. Comput Stat Data Anal 52:4673-4684 · Zbl 1452.62119 · doi:10.1016/j.csda.2008.03.011
[102] Sagarra M, Busing FMTA, Mar-Molinero C, Rialp J (2014) Assessing the asymmetric effects on branch rivalry of Spanish financial sector restructuring. Adv Data Anal Classif. https://doi.org/10.1007/s11634-014-0186-2 · Zbl 1414.62296 · doi:10.1007/s11634-014-0186-2
[103] Saito T (1986) Multidimensional scaling to explore complex aspects in dissimilarity judgment. Behaviormetrika 20:35-62 · doi:10.2333/bhmk.13.20_35
[104] Saito T (1991) Analysis of asymmetric proximity matrix by a model of distance and additive terms. Behaviormetrika 29:45-60 · doi:10.2333/bhmk.18.29_45
[105] Saito T, Yadohisa H (2005) Data analysis of asymmetric structures: advanced approaches in computational statistics. Marcel Dekker, New York · Zbl 1067.62006
[106] Shepard RN, Arabie P (1979) Additive clustering: representation of similarities as combination of discrete overlapping properties. Psychol Rev 86:87-123 · doi:10.1037/0033-295X.86.2.87
[107] Takane, Y.; Jung, S.; Oshima-Takane, Y.; Millsap, RE (ed.); Maydeu-Olivares, A. (ed.), Multidimensional scaling, 219-242 (2009), Los Angeles · doi:10.4135/9780857020994.n10
[108] Takeuchi A, Saito T, Yadohisa H (2007) Asymmetric agglomerative hierarchical clustering algorithms and their evaluations. J Classif 24:123-143 · Zbl 1130.62063 · doi:10.1007/s00357-007-0002-1
[109] Tomizawa S, Tahata K (2007) The analysis of symmetry and asymmetry: orthogonality of decomposition of symmetry into quasi-symmetry and marginal symmetry for multi-way tables. J Soc Française de Stat 148:3-36 · Zbl 1441.62153
[110] Tsuchida J, Yadohisa H (2016) Asymmetric multidimensional scaling of \[n\] n-mode \[m\] m-way categorical data using a log-linear model. Behaviormetrika 44:103-138 · doi:10.2333/bhmk.43.103
[111] Tucker LR, Messick WS (1963) An individual differences model for multidimensional scaling. Psychometrika 38:333-368 · doi:10.1007/BF02289557
[112] Tversky A (1977) Features of similarity. Psychol Rev 84:327-352 · doi:10.1037/0033-295X.84.4.327
[113] Van der Heijden PGM, de Leeuw J (1985) Correspondence analysis used complementary to loglinear analysis. Psychometrika 50:429-447 · Zbl 0616.62082 · doi:10.1007/BF02296262
[114] Van der Heijden PGM, Mooijart A (1995) Some new log-bilinear models for the analysis of asymmetry in a square contingency table. Sociol Methods Res 24:7-29 · doi:10.1177/0049124195024001002
[115] Van der Heijden PGM, de Falguerolles A, de Leeuw J (1989) A combined approach to contingency table analysis using correspondence analysis and log-linear analysis. Appl Stat 38:249-292 · Zbl 0707.62114 · doi:10.2307/2348058
[116] Vicari D (2014) Classification of asymmetric proximity data. J Classif 31:386-420 · Zbl 1360.62359 · doi:10.1007/s00357-014-9159-6
[117] Vicari D (2015) CLUSKEXT: CLUstering model for SKew-symmetric data including EXTernal information. Adv Data Anal Classif. https://doi.org/10.1007/s11634-015-0203-0 · Zbl 1414.62281 · doi:10.1007/s11634-015-0203-0
[118] Weeks DG, Bentler PM (1982) Restricted multidimensional scaling models for asymmetric proximities. Psychometrika 47:201-207 · doi:10.1007/BF02296275
[119] Yamaguchi, K.; Marsden, P. (ed.), Some models for the analysis of asymmetric association in square contingency tables with ordered categories (1990), Oxford
[120] Young FW (1975) An asymmetric Euclidean model for multi-process asymmetric data. Paper presented at U.S.-Japan seminar on MDS, San Diego, pp 79-88
[121] Young FW (1987) Weighted distance models. In: Young FW, Hamer RM (eds), Multidimensional scaling: History, theory, and applications. Lawrence Erlbaum, Hillsdale, NJ, pp 117-158
[122] Young FW, Hamer RM (1987) Multidimensional scaling: History, theory, and applications. Lawrence Erlbaum, Hillsdale, NJ
[123] Young FW (1984a) Scaling. Ann Rev Psychol 35:55-81 · doi:10.1146/annurev.ps.35.020184.000415
[124] Young, FW; Law, HG (ed.); etal., The general euclidean model, 440-465 (1984), New York
[125] Zielman B (2016) Package asymmetry, cran.r-project.org
[126] Zielman B (1991) Three-way scaling of asymmetric proximities. Research report R.R.-91-01, Department of Data Theory, Leiden
[127] Zielman B (1993) Two methods for multidimensional analysis of three-way skew-symmetric matrices. Research report R.R.-93-01, Department of Data Theory, Leiden
[128] Zielman B, Heiser WJ (1991) Spatial representations of asymmetric proximities. Research report R.R.-91-10, Department of Data Theory, Leiden · Zbl 0858.62101
[129] Zielman B, Heiser WJ (1993) Analysis of asymmetry by a slide-vector. Psychometrika 58:101-114 · Zbl 0775.92037 · doi:10.1007/BF02294474
[130] Zielman B, Heiser WJ (1996) Models for asymmetric proximities. Br J Math Stat Psychol 49:127-146 · Zbl 0858.62101 · doi:10.1111/j.2044-8317.1996.tb01078.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.