×

Asymmetric multidimensional scaling of two-mode three-way proximities. (English) Zbl 0905.92035

Summary: An asymmetric multidimensional scaling model and an associated nonmetric algorithm to analyze two-mode three-way proximities (object \(\times\) object \(\times \) source) are introduced. The model consists of a common object configuration and two kinds of weights, i.e., for both symmetry and asymmetry. In the common object configuration, each object is represented by a point and a circle (sphere, hypersphere) in a Euclidean space. The common object configuration represents pairwise proximity relationships between pairs of objects for the ‘group’ of all sources. Each source has its own symmetry weight and a set of asymmetry weights. Symmetry weights represent individual differences among sources of data in symmetric proximity relationships, and asymmetry weights represent individual differences among sources in asymmetric proximity relationships.
The associated nonmetric algorithm, based on J. B. Kruskal’s [Psychometrika 29, 115-129 (1964; Zbl 0123.36804)] nonmetric multidimensional scaling algorithm, is an extension of the algorithm for the asymmetric multidimensional scaling of one mode two-way proximities developed by A. Okada and T. Imaizumi [Behaviormetrika 21, 81-96 (1987)]. As an illustrative example, we analyze intergenerational occupational mobility from 1955 to 1985 in Japan among eight occupational categories.

MSC:

91C15 One- and multidimensional scaling in the social and behavioral sciences
62H30 Classification and discrimination; cluster analysis (statistical aspects)

Citations:

Zbl 0123.36804
Full Text: DOI

References:

[1] Arabie, P.; Carroll, J. D.; Desarbo, W. S., Three-Way Scaling and Clustering (1987), Newbury Park, CA: Sage, Newbury Park, CA
[2] Bloxom, B., Individual Differences in Multidimensional Scaling (1968), Princeton, NJ: Educational Testing Service, Princeton, NJ
[3] Carroll, J. D.; Shepard, R. N.; Romney, A. K.; Nerlove, S. B., Individual Differences and Multidimensional Scaling, Multidimensional Scaling: Theory and Applications in the Behavioral Sciences: Vol. 1. Theory, 105-155 (1972), New York: Seminar Press, New York · Zbl 0251.92015
[4] Carroll, J. D.; Chang, J. J., Analysis of Individual Differences in Multidimensional Scaling via an N-way Generalization of ‘Eckart-Young’ Decomposition, Psychometrika, 35, 283-319 (1970) · Zbl 0202.19101 · doi:10.1007/BF02310791
[5] Chino, N., A Graphical Technique for Representing the Asymmetric Relationships between N objects, Behaviormetrika, 5, 23-40 (1978) · doi:10.2333/bhmk.5.23
[6] Chino, N.; Shiraiwa, K., A Geometrical Structures of Some Non-distance Models for Asymmetric MDS, Behaviormetrika, 20, 35-47 (1993) · doi:10.2333/bhmk.20.35
[7] Constantine, A. G.; Gower, J. C., Graphical Representations of Asymmetric Matrices, Applied Statistics, 27, 297-304 (1978) · Zbl 0436.62049 · doi:10.2307/2347165
[8] Cunningham, J. P., Free Trees and Bidirectional Trees as Representations of Psychological Distances, Journal of Mathematical Psychology, 17, 165-188 (1978) · Zbl 0383.94041 · doi:10.1016/0022-2496(78)90029-9
[9] Desarbo, W. S.; Johnson, M. D.; Manrai, A. K.; Manrai, L. A.; Edwards, E. A., TSCALE: A New Multidimensional Scaling Procedure based on Tversky’s Contrast Model, Psychometrika, 57, 43-69 (1992) · Zbl 0761.92051 · doi:10.1007/BF02294658
[10] Desarbo, W. S.; Manrai, A. K., A New Multidimensional Scaling Methodology for the Analysis of Asymmetric Proximity Data in Marketing Research, Marketing Science, 11, 1-20 (1992) · doi:10.1287/mksc.11.1.1
[11] Gower, J. C.; Barra, J. R.; Brodeau, F.; Romier, G.; van Cutsen, B., The Analysis of Asymmetry and Orthogonality, Recent Developments in Statistics (1977), Amsterdam: North Holland, Amsterdam · Zbl 0366.62058
[12] Guttman, L., A General Nonmetric Technique for Finding the Smallest Coordinate Space for a Configuration of Points, Psychometrika, 33, 469-506 (1968) · Zbl 0205.49302 · doi:10.1007/BF02290164
[13] Harshman, R. A., Models for Analysis of Asymmetrical Relationships among N objects or Stimuli (1978), Hamilton, Ontario, Canada: MacMaster University, Hamilton, Ontario, Canada
[14] Harshman, R. A.; Green, P. E.; Wind, Y.; Lundy, M. E., A Model for the Analysis of Asymmetric Data in Marketing Research, Marketing Science, 1, 205-242 (1982) · doi:10.1287/mksc.1.2.205
[15] Horan, C. B., Multidimensional Scaling: Combining Observations When Individuals Have Different Perceptual Structures, Psychometrika, 34, 139-165 (1969) · doi:10.1007/BF02289341
[16] Kruskal, J. B., Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric Hypothesis, Psychometrika, 29, 1-27 (1964) · Zbl 0123.36803 · doi:10.1007/BF02289565
[17] Kruskal, J. B., Nonmetric Multidimensional Scaling: A Numerical Method, Psychometrika, 29, 115-129 (1964) · Zbl 0123.36804 · doi:10.1007/BF02289694
[18] Kruskal, J. B.; Carroll, J. D.; Krishnaiah, P. K., Geometric models and badness-of-fit measures, Multivariate analysis II, 639-671 (1969), New York: Academic Press, New York
[19] Lingoes, J. C.; Borg, I., A Quasi-Statistical Model for Choosing between Alternative Configurations Derived from Ordinally Constrained Data, British Journal of Mathematical and Statistical Psychology, 36, 36-53 (1978)
[20] Okada, A.; Gaul, W.; Schader, M., Asymmetric Multidimensional Scaling of Car Switching Data, Data. Expert Knowledge and Decisions, 279-290 (1988), Heidelberg: Springer-Verlag, Heidelberg
[21] Okada, A.; Jansen, M. G. H.; van Schuur, W. H., An Analysis of Intergenerational Mobility by Asymmetric Multidimensional Scaling, The Many Faces of Multivariate Analysis, 1-15 (1988), Groningen: RION, Groningen
[22] Okada, A., A Generalization of Asymmetric Multidimensional Scaling, Knowledge. Data and Computer-Assisted Decisions, 127-138 (1990), Heidelberg: Springer-Verlag, Heidelberg
[23] Okada, A.; Imaizumi, T., Nonmetric Method for Extended INDSCAL Model, Behaviormetrika, 7, 13-22 (1980) · doi:10.2333/bhmk.7.7_13
[24] Okada, A.; Imaizumi, T., Nonmetric Multidimensional Scaling of Asymmetric Proximities, Behaviormetrika, 21, 81-96 (1987) · doi:10.2333/bhmk.14.21_81
[25] OKADA, A., and IMAIZUMI, T. (1992), “Multidimensional Scaling Models of Two-Mode Three-Way Asymmetric Proximity Data,” Research Report, Rikkyo (St. Paul’s) University, 81-96.
[26] Saito, T., Analysis of Asymmetric Proximity Matrix by a Model of Distance and Additive Terms, Behaviormetrika, 29, 45-60 (1991) · doi:10.2333/bhmk.18.29_45
[27] Schönemann, P. H., An Algebraic Solution for a Class of Subjective Metrics Models, Psychometrika, 37, 441-451 (1972) · Zbl 0292.92014 · doi:10.1007/BF02291220
[28] Seiyama, K.; Naoi, A.; Sato, Y.; Tsuzuki, K.; Kojima, H.; Naoi, A.; Seiyama, K., Stratification Structure of Contemporary Japan and its Trend, Social Stratification in Contemporary Japan, Vol. 1. Structure and Process of Social Stratification, 15-50 (1990), Tokyo: Tokyo University Press, Tokyo
[29] Slater, P. B., Hierarchical Internal Migration Regions of France, IEEE Transactions on Systems, Man, and Cybernetics, 6, 321-324 (1976)
[30] Takane, Y.; Young, F. W.; De Leeuw, J., Nonmetric Individual Differences Multidimensional Scaling: An Alternating Least Squares Method with Optimal Scaling Features, Psychometrika, 42, 7-67 (1977) · Zbl 0354.92048 · doi:10.1007/BF02293745
[31] Tobler, W., Spatial Interaction Patterns, Journal of Environmental Systems, 6, 271-301 (1977) · doi:10.2190/VAKC-3GRF-3XUG-WY4W
[32] Tobler, W. R., Estimation of Attractiveness from Interactions, Environment and Planning A, 11, 121-127 (1979) · doi:10.1068/a110121
[33] Torgerson, W. S., Multidimensional Scaling: I. Theory and Method, Psychometrika, 17, 401-419 (1952) · Zbl 0049.37603 · doi:10.1007/BF02288916
[34] Tucker, L. R.; Messick, S. J., An Individual Differences Model for Multidimensional Scaling, Psychometrika, 38, 333-368 (1963) · doi:10.1007/BF02289557
[35] Tversky, A., Features of Similarity, Psychological Review, 84, 327-352 (1977) · doi:10.1037/0033-295X.84.4.327
[36] Weeks, D. G.; Bentler, P. M., Restricted Multidimensional Scaling Models for Asymmetric Proximities, Psychometrika, 47, 201-208 (1982) · doi:10.1007/BF02296275
[37] YOUNG, F. W. (1975), “An Asymmetric Euclidean Model for Multi-Process Asymmetric Data.” Proceedings of the US-Japan Seminar on the Theory, Methods and Applications of Multidimensional Scaling and Related Techniques, University of California San Diego, La Jolla, CA, 79-88.
[38] Young, F. W., Multidimensional Scaling: History, Theory and Applications (1987), Hills-dale. NJ: Erlbaum, Hills-dale. NJ
[39] ZIELMAN, B. (1991), “Three-Way Scaling of Asymmetric Proximities,” Research Report RR91-01, Department of Data Theory, University of Leiden.
[40] ZIELMAN, B., and HEISER, W. J. (1991), “Analysis of Asymmetry by a Slide-Vector,” Research Report RR91-05, Department of Data Theory, University of Leiden. · Zbl 0775.92037
[41] Zielman, B.; Heiser, W. J., Analysis of Asymmetry by a Slide-Vector, Psychometrika, 58, 101-114 (1993) · Zbl 0775.92037 · doi:10.1007/BF02294474
[42] Zielman, B.; Heiser, W. J., Models for Asymmetric Proximities, British Journal of Mathematical and Statistical Psychology, 49, 127-146 (1996) · Zbl 0858.62101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.