×

Iterative solution methods for 3D controlled-source electromagnetic forward modelling of geophysical exploration scenarios. (English) Zbl 1504.86027

Summary: We develop an efficient and robust iterative framework suitable for solving the linear system of equations resulting from the spectral element discretisation of the curl-curl equation of the total electric field encountered in geophysical controlled-source electromagnetic applications. We use the real-valued equivalent form of the original complex-valued system and solve this arising real-valued two-by-two block system (outer system) using the generalised conjugate residual method preconditioned with a highly efficient block-based PREconditioner for Square Blocks (PRESB). Applying this preconditioner equates to solving two smaller inner symmetric systems which are either solved using a direct solver or iterative methods, namely the generalised conjugate residual or the flexible generalised minimal residual methods preconditioned with the multigrid-based auxiliary-space preconditioner AMS. Our numerical experiments demonstrate the robustness of the outer solver with respect to spatially variable material parameters, for a wide frequency range of five orders of magnitude (0.1–10’000 Hz), with respect to the number of degrees of freedom, and for stretched structured and unstructured as well as locally refined meshes. For all the models considered, the outer solver reaches convergence in a small (typically < 20) number of iterations. Further, our numerical tests clearly show that solving the two inner systems iteratively using the indicated preconditioned iterative methods is computationally beneficial in terms of memory requirement and time spent as compared to a direct solver. On top of that, our iterative framework works for large-scale problems where direct solvers applied to the original complex-valued systems succumb due to their excessive memory consumption, thus making the iterative framework better suited for large-scale 3D problems. Comparison to a similar iterative framework based on a block-diagonal and the auxiliary-space preconditioners reveals that the PRESB preconditioner requires slightly fewer iterations to converge yielding a certain gain in time spent to obtain the solution of the two-by-two block system.

MSC:

86A25 Geo-electricity and geomagnetism
86-10 Mathematical modeling or simulation for problems pertaining to geophysics

References:

[1] Ainsworth, M.; Coyle, J., Conditioning of hierarchic p-version Nédélec elements on meshes of curvilinear quadrilaterals and hexahedra, SIAM J. Numer. Anal., 41, 2, 731-750 (2003) · Zbl 1091.78014 · doi:10.1137/S003614290239590X
[2] Alumbaugh, DL; Newman, GA; Prevost, L.; Shadid, JN, Three-dimensional wideband electromagnetic modeling on massively parallel computers, Radio Sci., 31, 1, 1-23 (1996) · doi:10.1029/95RS02815
[3] Amestoy, P.; Buttari, A.; L’Excellent, J-Y; Mary, T., Performance and scalability of the block low-rank multifrontal factorization on multicore architectures, ACM Transactions on Mathematical Software, 45, 2:1-2:26 (2019) · Zbl 1471.65025 · doi:10.1145/3242094
[4] Amestoy, P.; Duff, IS; Koster, J.; L’Excellent, J-Y, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 1, 15-41 (2001) · Zbl 0992.65018 · doi:10.1137/S0895479899358194
[5] Amestoy, PR; Guermouche, A.; L’Excellent, J-Y; Pralet, S., Hybrid scheduling for the parallel solution of linear systems, Parallel Comput., 32, 2, 136-156 (2006) · doi:10.1016/j.parco.2005.07.004
[6] Aruliah, DA; Ascher, UM, Multigrid preconditioning for Krylov methods for time-harmonic Maxwell’s equations in three dimensions, SIAM J. Sci. Comput., 24, 2, 702-718 (2002) · Zbl 1016.65091 · doi:10.1137/S1064827501387358
[7] Axelsson, O., Unified analysis of preconditioning methods for saddle point matrices, Numerical Linear Algebra with Applications, 22, 2, 233-253 (2015) · Zbl 1363.65047 · doi:10.1002/nla.1947
[8] Axelsson, O., Optimality properties of a square block matrix preconditioner with applications, Computers & Mathematics with Applications, 80, 2, 286-294 (2020) · Zbl 1451.65026 · doi:10.1016/j.camwa.2019.09.024
[9] Axelsson, O.; Boyanova, P.; Kronbichler, M.; Neytcheva, M.; Wu, X., Numerical and computational efficiency of solvers for two-phase problems, Computers & Mathematics with Applications, 65, 3, 301-314 (2013) · Zbl 1319.76025 · doi:10.1016/j.camwa.2012.05.020
[10] Axelsson, O.; Farouq, S.; Neytcheva, M., Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems, Numerical Algorithms, 73, 3, 631-663 (2016) · Zbl 1353.65059 · doi:10.1007/s11075-016-0111-1
[11] Axelsson, O.; Farouq, S.; Neytcheva, M., A preconditioner for optimal control problems, constrained by Stokes equation with a time-harmonic control, J. Comput. Appl. Math., 310, 5-18 (2017) · Zbl 1347.49048 · doi:10.1016/j.cam.2016.05.029
[12] Axelsson, O.; Lukáš, D., Preconditioning methods for eddy-current optimally controlled time-harmonic electromagnetic problems, J. Numer. Math., 27, 1, 1-21 (2019) · Zbl 1428.65040 · doi:10.1515/jnma-2017-0064
[13] Axelsson, O.; Neytcheva, M., Eigenvalue estimates for preconditioned saddle point matrices, Numerical Linear Algebra with Applications, 13, 4, 339-360 (2006) · Zbl 1224.65080 · doi:10.1002/nla.469
[14] Axelsson, O., Neytcheva, M.: Preconditioners for two-by-two block matrices with square blocks. Department of Information Technology, Uppsala Universitet (2018)
[15] Axelsson, O.; Neytcheva, M.; Ahmad, B., A comparison of iterative methods to solve complex valued linear algebraic systems, Numerical Algorithms, 66, 4, 811-841 (2014) · Zbl 1307.65034 · doi:10.1007/s11075-013-9764-1
[16] Axelsson, O.; Vassilevski, PS, A black box generalized conjugate gradient solver with inner iterations and variable-step preconditioning, SIAM J. Matrix Anal. Appl., 12, 4, 625-644 (1991) · Zbl 0748.65028 · doi:10.1137/0612048
[17] Bai, Z-Z, Rotated block triangular preconditioning based on PMHSS, Science China Mathematics, 56, 12, 2523-2538 (2013) · Zbl 1305.65114 · doi:10.1007/s11425-013-4695-9
[18] Bai, Z-Z; Benzi, M.; Chen, F., On preconditioned MHSS iteration methods for complex symmetric linear systems, Numerical Algorithms, 56, 2, 297-317 (2011) · Zbl 1209.65037 · doi:10.1007/s11075-010-9441-6
[19] Bai, Z-Z; Benzi, M.; Chen, F.; Wang, Z-Q, Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems, IMA J. Numer. Anal., 33, 1, 343-369 (2013) · Zbl 1271.65100 · doi:10.1093/imanum/drs001
[20] Balay, S., Abhyankar, S., Adams, M.F., Benson, S., Brown, J., Brune, P., Buschelman, K., Constantinescu, E., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Hapla, V., Isaac, T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M.G., Kong, F., Kruger, S., May, D.A., McInnes, L.C., Mills, R.T., Mitchell, L., Munson, T., Roman, J.E., Rupp, K., Sanan, P., Sarich, J., Smith, B.F., Zampini, S., Zhang, H., Zhang, H., Zhang, J.: PETSc/TAO users manual (Tech. Re. No. ANL-21/39 - Revision 3.17). Argonne National Laboratory (2022)
[21] Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing, pp 163-202. Birkhäuser Press (1997) · Zbl 0882.65154
[22] Barenblatt, GI; Barenblatt, GI; Isaakovich, BG, Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics (No. 14) (1996), Cambridge: Cambridge University Press, Cambridge · Zbl 0907.76002 · doi:10.1017/CBO9781107050242
[23] Benzi, M.; Golub, GH; Liesen, J., Numerical solution of saddle point problems, Acta Numer., 14, 1-137 (2005) · Zbl 1115.65034 · doi:10.1017/S0962492904000212
[24] Bhaskar, R.; Nigam, A., Qualitative physics using dimensional analysis, Artif. Intell., 45, 1-2, 73-111 (1990) · doi:10.1016/0004-3702(90)90038-2
[25] Bin Zubair Syed, H.; Farquharson, C.; MacLachlan, S., Block preconditioning techniques for geophysical electromagnetics, SIAM J. Sci. Comput., 42, 3, B696-B721 (2020) · Zbl 1439.86003 · doi:10.1137/19M1241611
[26] Börner, R-U, Numerical modelling in geo-electromagnetics: Advances and challenges, Surv. Geophys., 31, 2, 225-245 (2010) · doi:10.1007/s10712-009-9087-x
[27] Boyanova, P.; Do-Quang, M.; Neytcheva, M., Efficient preconditioners for large scale binary Cahn-Hilliard models, Computational Methods in Applied Mathematics, 12, 1, 1-22 (2012) · Zbl 1284.65047 · doi:10.2478/cmam-2012-0001
[28] Cai, H.; Xiong, B.; Han, M.; Zhdanov, M., 3D controlled-source electromagnetic modeling in anisotropic medium using edge-based finite element method, Comput. Geosci., 73, 164-176 (2014) · doi:10.1016/j.cageo.2014.09.008
[29] Castillo-Reyes, O.; de la Puente, J.; Cela, JM, PETGEM: A parallel code for 3D CSEM forward modeling using edge finite elements, Comput. Geosci., 119, 123-136 (2018) · doi:10.1016/j.cageo.2018.07.005
[30] Chen, J.; Chen, Z.; Cui, T.; Zhang, L-B, An adaptive finite element method for the eddy current model with circuit/field couplings, SIAM J. Sci. Comput., 32, 2, 1020-1042 (2010) · Zbl 1211.78029 · doi:10.1137/080713112
[31] Chow, E., Falgout, R.D., Hu, J.J., Tuminaro, R.S., Yang, U.M.: A survey of parallelization techniques for multigrid solvers. Parallel Processing for Scientific Computing 179-201 (2006)
[32] Da Silva, NV; Morgan, JV; MacGregor, L.; Warner, M., A finite element multifrontal method for 3D CSEM modeling in the frequency domain, Geophysics, 77, 2, E101-E115 (2012) · doi:10.1190/geo2010-0398.1
[33] Dendy, J., Black box multigrid, J. Comput. Phys., 48, 3, 366-386 (1982) · Zbl 0495.65047 · doi:10.1016/0021-9991(82)90057-2
[34] Eisenstat, SC; Elman, HC; Schultz, MH, Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 20, 2, 345-357 (1983) · Zbl 0524.65019 · doi:10.1137/0720023
[35] Elías, MW; Zyserman, FI; Rosas-Carbajal, M.; Manassero, MC, Three-dimensional modelling of controlled source electro-magnetic surveys using non-conforming finite element methods, Geophys. J. Int., 229, 2, 1133-1151 (2022) · doi:10.1093/gji/ggab524
[36] Falgout, R.D.: An introduction to algebraic multigrid (Tech. Rep.). Lawrence Livermore National Lab., Livermore, CA (United States) (2006)
[37] Falgout, R.D., Jones, J.E., Yang, U.M.: The design and implementation of hypre, a library of parallel high performance preconditioners. In: Numerical Solution of Partial Differential Equations on Parallel Computers, pp 267-294. Springer (2006) · Zbl 1097.65059
[38] Falgout, R.D., Yang, U.M.: hypre: A library of high performance preconditioners. In: International Conference on Computational Science, pp 632-641 (2002) · Zbl 1056.65046
[39] Farquharson, CG; Miensopust, MP, Three-dimensional finite-element modelling of magnetotelluric data with a divergence correction, J. Appl. Geophys., 75, 4, 699-710 (2011) · doi:10.1016/j.jappgeo.2011.09.025
[40] Gee, M., Siefert, C., Hu, J., Tuminaro, R., Sala, M.G.: Ml 5.0 smoothed aggregation user’s guide (Tech. Rep. No. SAND2006-2649). Sandia National Laboratories (2006)
[41] Geuzaine, C.; Remacle, J-F, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Meth. Eng., 79, 11, 1309-1331 (2009) · Zbl 1176.74181 · doi:10.1002/nme.2579
[42] Gottlieb, D., Orszag, S.A.: Numerical analysis of spectral methods: Theory and Applications. SIAM (1977) · Zbl 0412.65058
[43] Gould, NI; Scott, JA; Hu, Y., A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations, ACM Transactions on Mathematical Software (TOMS), 33, 2, 10-es (2007) · Zbl 1365.65129 · doi:10.1145/1236463.1236465
[44] Grayver, AV; Bürg, M., Robust and scalable 3-D geo-electromagnetic modelling approach using the finite element method, Geophys. J. Int., 198, 1, 110-125 (2014) · doi:10.1093/gji/ggu119
[45] Grayver, AV; Kolev, TV, Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method, Geophysics, 80, 6, E277-E291 (2015) · doi:10.1190/geo2015-0013.1
[46] Greif, C.; Schötzau, D., Preconditioners for the discretized time-harmonic Maxwell equations in mixed form, Numerical Linear Algebra with Applications, 14, 4, 281-297 (2007) · Zbl 1199.78010 · doi:10.1002/nla.515
[47] Haber, E.; Heldmann, S., An octree multigrid method for quasi-static Maxwell’s equations with highly discontinuous coefficients, J. Comput. Phys., 223, 2, 783-796 (2007) · Zbl 1125.78013 · doi:10.1016/j.jcp.2006.10.012
[48] Hiptmair, R.; Xu, J., Nodal auxiliary space preconditioning in H (curl) and H (div) spaces, SIAM J. Numer. Anal., 45, 6, 2483-2509 (2007) · Zbl 1153.78006 · doi:10.1137/060660588
[49] Jahandari, H.; Farquharson, CG, Finite-volume modelling of geophysical electromagnetic data on unstructured grids using potentials, Geophys. J. Int., 202, 3, 1859-1876 (2015) · doi:10.1093/gji/ggv257
[50] Jiránek, P.; Rozložník, M.; Gutknecht, MH, How to make simpler GMRES and GCR more stable, SIAM J. Matrix Anal. Appl., 30, 4, 1483-1499 (2009) · Zbl 1176.65036 · doi:10.1137/070707373
[51] Kalscheuer, T.; Juhojuntti, N.; Vaittinen, K., Two-dimensional magnetotelluric modelling of ore deposits: Improvements in model constraints by inclusion of borehole measurements, Surv. Geophys., 39, 3, 467-507 (2018) · doi:10.1007/s10712-017-9454-y
[52] Koldan, J.; Puzyrev, V.; de la Puente, J.; Houzeaux, G.; Cela, JM, Algebraic multigrid preconditioning within parallel finite-element solvers for 3-D electromagnetic modelling problems in geophysics, Geophys. J. Int., 197, 3, 1442-1458 (2014) · doi:10.1093/gji/ggu086
[53] Kolev, T V, Vassilevski, P.S.: Parallel H1-based auxiliary space AMG solver for H (curl) problems (Tech. Rep). Lawrence Livermore National Lab., Livermore, CA (United States) (2006)
[54] Kolev, T.V., Vassilevski, P.S.: Parallel auxiliary space AMG for H (curl) problems. J. Comput. Math. 604-623 (2009) · Zbl 1212.65128
[55] Kollmann, M.: Efficient iterative solvers for saddle point systems arising in PDE-constrained optimization problems with inequality constraints. Johannes Kepler University Linz (2013)
[56] Kolmbauer, M.; Langer, U., A robust preconditioned MinRes solver for distributed time-periodic eddy current optimal control problems, SIAM J. Sci. Comput., 34, 6, B785-B809 (2012) · Zbl 1258.49059 · doi:10.1137/110842533
[57] Monk, P., Finite Element Methods for Maxwell’s Equations (2003), Oxford: Oxford University Press, Oxford · Zbl 1024.78009 · doi:10.1093/acprof:oso/9780198508885.001.0001
[58] Mulder, WA, A multigrid solver for 3D electromagnetic diffusion, Geophys. Prospect., 54, 5, 633-649 (2006) · doi:10.1111/j.1365-2478.2006.00558.x
[59] Nédélec, J-C, Mixed finite elements in \(\mathbb{R}\) ℝ 3, Numer. Math., 35, 3, 315-341 (1980) · Zbl 0419.65069 · doi:10.1007/BF01396415
[60] Newman, GA, A review of high-performance computational strategies for modeling and imaging of electromagnetic induction data, Surv. Geophys., 35, 1, 85-100 (2014) · doi:10.1007/s10712-013-9260-0
[61] Pardo, D.; Paszynski, M.; Collier, N.; Alvarez, J.; Dalcin, L.; Calo, VM, A survey on direct solvers for Galerkin methods, SeMA Journal, 57, 1, 107-134 (2012) · Zbl 1311.65030 · doi:10.1007/BF03322602
[62] Patera, AT, A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys., 54, 3, 468-488 (1984) · Zbl 0535.76035 · doi:10.1016/0021-9991(84)90128-1
[63] Pearson, JW; Wathen, AJ, A new approximation of the Schur complement in preconditioners for PDE-constrained optimization, Numerical Linear Algebra with Applications, 19, 5, 816-829 (2012) · Zbl 1274.65187 · doi:10.1002/nla.814
[64] Pearson, JW; Wathen, AJ, Fast iterative solvers for convection-diffusion control problems, Electron. Trans. Numer. Anal, 40, 294-310 (2013) · Zbl 1287.49031
[65] Pedersen, LB; Bastani, M.; Dynesius, L., Groundwater exploration using combined controlled-source and radiomagnetotelluric techniques, Geophysics, 70, 1, G8-G15 (2005) · doi:10.1190/1.1852774
[66] Puzyrev, V.; Cela, JM, A review of block Krylov subspace methods for multisource electromagnetic modelling, Geophys. J. Int., 202, 2, 1241-1252 (2015) · doi:10.1093/gji/ggv216
[67] Puzyrev, V.; Koldan, J.; de la Puente, J.; Houzeaux, G.; Vázquez, M.; Cela, JM, A parallel finite-element method for three-dimensional controlled-source electromagnetic forward modelling, Geophys. J. Int., 193, 2, 678-693 (2013) · doi:10.1093/gji/ggt027
[68] Puzyrev, V.; Koric, S.; Wilkin, S., Evaluation of parallel direct sparse linear solvers in electromagnetic geophysical problems, Comput. Geosci., 89, 79-87 (2016) · doi:10.1016/j.cageo.2016.01.009
[69] Qiu, C.; Yin, C.; Liu, Y.; Ren, X.; Chen, H.; Yan, T., Solution of large-scale 3D controlled-source electromagnetic modeling problem using efficient iterative solvers, Geophysics, 86, 4, E283-E296 (2021) · doi:10.1190/geo2020-0461.1
[70] Reitzinger, S.; Schöberl, J., An algebraic multigrid method for finite element discretizations with edge elements, Numerical Linear Algebra with Applications, 9, 3, 223-238 (2002) · Zbl 1071.65170 · doi:10.1002/nla.271
[71] Ren, Z.; Kalscheuer, T.; Greenhalgh, S.; Maurer, H., A goal-oriented adaptive finite-element approach for plane wave 3-D electromagnetic modelling, Geophys. J. Int., 194, 2, 700-718 (2013) · doi:10.1093/gji/ggt154
[72] Rochlitz, R.; Skibbe, N.; Günther, T., custEM: Customizable finite-element simulation of complex controlled-source electromagnetic data, Geophysics, 84, 2, F17-F33 (2019) · doi:10.1190/geo2018-0208.1
[73] Rønquist, EM; Patera, AT, A Legendre spectral element method for the Stefan problem, Int. J. Numer. Meth. Eng., 24, 12, 2273-2299 (1987) · Zbl 0632.65126 · doi:10.1002/nme.1620241204
[74] Rulff, P.; Buntin, LM; Kalscheuer, T., Efficient goal-oriented mesh refinement in 3-D finite-element modelling adapted for controlled source electromagnetic surveys, Geophys. J. Int., 227, 3, 1624-1645 (2021) · doi:10.1093/gji/ggab264
[75] Saad, Y., A flexible inner-outer preconditioned GMRES algorithm, SIAM J. Sci. Comput., 14, 2, 461-469 (1993) · Zbl 0780.65022 · doi:10.1137/0914028
[76] Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM (2003) · Zbl 1031.65046
[77] Schenk, O.; Gärtner, K., Solving unsymmetric sparse systems of linear equations with PARDISO, Futur. Gener. Comput. Syst., 20, 3, 475-487 (2004) · doi:10.1016/j.future.2003.07.011
[78] Schenk, O.; Gärtner, K., On fast factorization pivoting methods for sparse symmetric indefinite systems, Electron. Trans. Numer. Anal., 23, 1, 158-179 (2006) · Zbl 1112.65022
[79] Schöberl, J.; Zulehner, W., Symmetric indefinite preconditioners for saddle point problems with applications to PDE-constrained optimization problems, SIAM J. Matrix Anal. Appl., 29, 3, 752-773 (2007) · Zbl 1154.65029 · doi:10.1137/060660977
[80] Schwarzbach, C.: Stability of finite element solutions to Maxwell’s equations in frequency domain. Unpublished doctoral dissertation, TU Bergakademie Freiberg (2009)
[81] Schwarzbach, C.; Börner, R-U; Spitzer, K., Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics-a marine CSEM example, Geophys. J. Int., 187, 1, 63-74 (2011) · doi:10.1111/j.1365-246X.2011.05127.x
[82] Sheard, SN; Ritchie, TJ; Christopherson, KR; Brand, E., Mining, environmental, petroleum, and engineering industry applications of electromagnetic techniques in geophysics, Surv. Geophys., 26, 5, 653-669 (2005) · doi:10.1007/s10712-005-1760-0
[83] Smith, JT, Conservative modeling of 3-D electromagnetic fields, Part II: Biconjugate gradient solution and an accelerator, Geophysics, 61, 5, 1319-1324 (1996) · doi:10.1190/1.1444055
[84] Stoll, M.; Wathen, A., Preconditioning for partial differential equation constrained optimization with control constraints, Numerical Linear Algebra with Applications, 19, 1, 53-71 (2012) · Zbl 1274.65189 · doi:10.1002/nla.823
[85] Streich, R., 3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: Direct solution and optimization for high accuracy, Geophysics, 74, 5, F95-F105 (2009) · doi:10.1190/1.3196241
[86] Streich, R., Controlled-source electromagnetic approaches for hydrocarbon exploration and monitoring on land, Surv. Geophys., 37, 1, 47-80 (2016) · doi:10.1007/s10712-015-9336-0
[87] Streich, R.; Becken, M.; Ritter, O., Imaging of CO2 storage sites, geothermal reservoirs, and gas shales using controlled-source magnetotellurics: Modeling studies, Geochemistry, 70, 63-75 (2010) · doi:10.1016/j.chemer.2010.05.004
[88] Trottenberg, U.; Oosterlee, CW; Schuller, A., Multigrid (2000), New York: Elsevier, New York
[89] Um, ES; Commer, M.; Newman, GA, Efficient pre-conditioned iterative solution strategies for the electromagnetic diffusion in the Earth: finite-element frequency-domain approach, Geophys. J. Int., 193, 3, 1460-1473 (2013) · doi:10.1093/gji/ggt071
[90] Van der Vorst, HA, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 13, 2, 631-644 (1992) · Zbl 0761.65023 · doi:10.1137/0913035
[91] Wannamaker, PE; Stodt, JA; Rijo, L., A stable finite element solution for two-dimensional magnetotelluric modelling, Geophys. J. Int., 88, 1, 277-296 (1987) · doi:10.1111/j.1365-246X.1987.tb01380.x
[92] Weaver, JT, Mathematical Methods for Geo-Electromagnetic Induction, vol. 7 (1994), Baldock: Research Studies Press, Baldock · Zbl 0862.76002
[93] Weiss, M.; Kalscheuer, T.; Ren, Z., Spectral element method for 3-D controlled-source electromagnetic forward modelling using unstructured hexahedral meshes, Geophys. J. Int., 232, 2, 1427-1454 (2022) · doi:10.1093/gji/ggac358
[94] Yang, U.M.: Parallel algebraic multigrid methods-high performance preconditioners. In: Numerical Solution of Partial Differential Equations on Parallel Computers, pp 209-236. Springer (2006) · Zbl 1097.65125
[95] Yin, C.; Liu, L.; Liu, Y.; Zhang, B.; Qiu, C.; Huang, X., 3D frequency-domain airborne EM forward modelling using spectral element method with Gauss-Lobatto-Chebyshev polynomials, Explor. Geophys., 50, 5, 461-471 (2019) · doi:10.1080/08123985.2019.1614162
[96] Zulehner, W., Nonstandard norms and robust estimates for saddle point problems, SIAM J. Matrix Anal. Appl., 32, 2, 536-560 (2011) · Zbl 1251.65078 · doi:10.1137/100814767
[97] Zulehner, W.: Efficient solvers for saddle point problems with applications to PDE-constrained optimization. In: Advanced Finite Element Methods and Applications, pp 197-216. Springer (2013) · Zbl 1263.65030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.