×

An octree multigrid method for quasi-static Maxwell’s equations with highly discontinuous coefficients. (English) Zbl 1125.78013

Summary: We develop an OcTree discretization for Maxwell’s equations in the quasi-static regime. We then use this discretization in order to develop a multigrid method for Maxwell’s equations with highly discontinuous coefficients. We test our algorithms and compare it to other multilevel algorithms.

MSC:

78M25 Numerical methods in optics (MSC2010)
65N55 Multigrid methods; domain decomposition for boundary value problems involving PDEs
78A30 Electro- and magnetostatics
65F10 Iterative numerical methods for linear systems

Software:

ML

References:

[1] Aruliah, D.; Ascher, U., Multigrid preconditioning for time-harmonic maxwell’s equations in 3D, SIAM J. Sci. Comp., 24, 702-718 (2003) · Zbl 1016.65091
[2] Barrett, R.; Berry, M.; Chan, T. F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; Van der Vorst, H., Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (1994), SIAM: SIAM Philadelphia
[3] Bochev, P.; Hu, J.; Robinson, A.; Tuminaro, R., Towards robust 3d z-pinch simulations: discretization and fast solvers for magnetic diffusion in heterogeneous conductors, Electron. Trans. Numer. Anal., 14, 23-34 (2002)
[4] A. Bossavit, L. Kettunen, Yee-like schemes on staggered cellular grids: a synthesis between and fem approaches, COMPUMAG, 1999, short contribution.; A. Bossavit, L. Kettunen, Yee-like schemes on staggered cellular grids: a synthesis between and fem approaches, COMPUMAG, 1999, short contribution. · Zbl 0936.78011
[5] Clemens, M.; Weiland, T., Numerical algorithms for the FDITD and FDTD simulation of slowly varying electromagnetic fields, Int. J. Numer. Modelling: Electron. Networks, Devices Fields (NumMod), 12, 2, 3-22 (1999) · Zbl 0936.78013
[6] Dendy, J. E., Black box multigrid, J. Comput. Phys., 48, 366-386 (1982) · Zbl 0495.65047
[7] Edwards, M., Elimination of adaptive grid interface errors in the discrete cell centered pressure equation, J. Comput. Phys., 126, 356-372 (1996) · Zbl 0858.76062
[8] Ewing, R. E.; Lazarov, R. D.; Vassilevski, P. S., Local refinement techniques for elliptic problems on cell-centered grids i, error analysis, Math. Comp., 56, 437461 (1991) · Zbl 0724.65093
[9] Geng, N.; Baum, C. E.; Carin, L., On the low-frequency natural response of conducting and permeable targets, IEEE Trans. Geosci. Remote Sensing, 37, 347-359 (1999)
[10] Gresho, P. M.; Sani, R. L., On pressure boundary conditions for the incompressible Navier-Stokes equations, Int. J. Numer. Methods Fluids, 7, 1111-1145 (1987) · Zbl 0644.76025
[11] Haber, E.; Ascher, U., Fast finite volume simulation of 3D electromagnetic problems with highly discontinuous coefficients, SIAM J. Sci. Comput., 22, 1943-1961 (2001) · Zbl 0992.78033
[12] Haber, E.; Ascher, U.; Aruliah, D.; Oldenburg, D., Fast simulation of 3D electromagnetic using potentials, J. Comput. Phys., 163, 150-171 (2000) · Zbl 1145.78323
[13] Haber, E.; Ascher, U.; Oldenburg, D., On optimization techniques for solving nonlinear inverse problems, Inverse Problems, 16, 1263-1280 (2000) · Zbl 0974.49021
[14] Hiptmair, R., Multigrid method for Maxwell’s equations, SIAM J. Numer. Anal., 36, 204-225 (1998) · Zbl 0922.65081
[15] Hjaltason, G. R.; Samet, H., Speeding up construction of quadtrees for spatial indexing, VLDB J., 11, 109-137 (2002)
[16] Hu, J.; Tuminaro, R.; Bochev, P.; Garasi, C.; Robinson, A., Towards an \(h\)-independent algebraic multigrid method for maxwell’s equation, SIAM J. Sci. Comput., 27, 5, 1669-1708 (2006) · Zbl 1136.76341
[17] Hyman, J. M.; Shashkov, M., Mimetic discretizations for Maxwell’s equations, J. Comput. Phys., 151, 881-909 (1999) · Zbl 0956.78015
[18] Sanjay Kumar Khattri, Numerical tools for multicomponent, multiphase, reactive processes: flow of \(CO_2\); Sanjay Kumar Khattri, Numerical tools for multicomponent, multiphase, reactive processes: flow of \(CO_2\)
[19] Knapek, S., Matrix-dependent multigrid homogenization for diffusion problems, SIAM J. Sci. Comp., 20, 2, 515-533 (1999) · Zbl 0926.35017
[20] Lipnikov, K.; Morel, J.; Shashkov, M., Mimetic finite difference methods for diffusion equations on non-orthogonal amr meshes, J. Comput. Phys., 199, 589-597 (2004) · Zbl 1057.65071
[21] Losasso, F.; Fedkiw, R.; Osher, S., Spatially adaptive techniques for level set methods and incompressible flow, Comput. Fluids, 35, 457-462 (2006)
[22] Losasso, F.; Gibou, F.; Fedkiw, R., Simulating water and smoke with an octree data structure, SIGGRAPH, 23, 457-462 (2004)
[23] J. Hu, M. Sala, R.S. Tuminaro, Ml 3.1 smoothed aggregation user’s guide, Technical Report SAND2004-4819, Sandia National Laboratories, 2004.; J. Hu, M. Sala, R.S. Tuminaro, Ml 3.1 smoothed aggregation user’s guide, Technical Report SAND2004-4819, Sandia National Laboratories, 2004.
[24] Monk, P., Finite Element Methods for Maxwell’s Equations (2003), Oxford University Press: Oxford University Press Oxford · Zbl 1024.78009
[25] Reitzinger, R.; Schoberl, J., An algebraic multigrid method for finite element discretizations with edge elements, Numer. Linear Algebra Appl., 9, 223-238 (2002) · Zbl 1071.65170
[26] Sidilkover, D.; Ascher, U., A multigrid solver for the steady state Navier-Stokes equations using the pressure-poisson formulation, Comput. Appl. Math. (SBMAC), 14, 21-35 (1995) · Zbl 0833.76060
[27] Trottenberg, U.; Oosterlee, C.; Schuller, A., Multigrid (2001), Academic Press: Academic Press New York · Zbl 0976.65106
[28] P. Vanek, J. Mandel, M. Brezina, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Technical Report UCD-CCM-036, 1995, p. 1.; P. Vanek, J. Mandel, M. Brezina, Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems, Technical Report UCD-CCM-036, 1995, p. 1. · Zbl 0851.65087
[29] Wan, J. W.L., Interface preserving coarsening for elliptic problems with highly discontinuous coefficients, Numer. Linear Alg. Appl., 7, 727-741 (2000) · Zbl 1051.65122
[30] Wang, Z. J.; Przekwasb, A. J.; Liuc, Y., A fv-td electromagnetic solver using adaptive cartesian grids, Comput. Phys. Commun., 148, 17-29 (2002)
[31] Ward, S. H.; Hohmann, G. W., Electromagnetic theory for geophysical applications, Electromag. Meth. Appl. Geophys., 1, 131-311 (1988), Soc. Expl. Geophys
[32] Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag., 14, 302-307 (1966) · Zbl 1155.78304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.